Tutorial Assignment 4 Solutions APM2EA1 6 March 2017 Tutorial Assignment 4 is worth 10 Marks Problem 1: The following figure illustrates the problem: The forces acting on block A are summed to the null vector (applying the equilibrium condition): f + N A + W A + T A = 0, where T A =: T . The forces acting on block B are summed to the null vector: T B + W B = 0, 1 where T B = T . None of the forces acting on block B have non-zero x-components. Applying the equilibrium condition to the y-components of block B results in −WB + T = 0 ⇒ T = WB . Applying the equilibrium condition to the x-components of block A: −f + T = 0 ⇒ f = T. Applying the equilibrium condition to the y-components of block A results in −WA + NA = 0 ⇒ NA = WA . With f = µNA , then f =T ⇒ µNA = WB ⇒ µWA = WB WB . ⇒µ= WA Problem 2: The following figure defines the tensions: 2 N1 for C: T 1 + T 2 + W B = 0. For the x-components: T1 cos 65◦ − T2 cos 20◦ = 0 ⇒ T1 = T2 cos 20◦ cos 65◦ . For the y-components: T1 sin 65◦ − T2 sin 20◦ − WB = 0 cos 20◦ ⇒ T2 sin 65◦ − T2 sin 20◦ = WB cos 65◦ ⇒ T2 (cos 20◦ sin 65◦ − sin 65◦ cos 20◦ ) = WB cos 65◦ cos 65◦ ⇒ T2 = WB sin 45◦ √ ⇔ T2 = 2WB cos 65◦ . Since the tension in rope F C is the same at all points, then T3 = T2 . N1 for F : T 3 + T 4 + W A = 0. 3 For the x-components: T3 cos 20◦ − T4 cos 40◦ = 0 cos 20◦ ⇒ T4 = . cos 40◦ For the y-components: T3 sin 20◦ + T4 sin 40◦ = 0 ◦ ⇒ WA = T3 sin 20 + T3 cos 20◦ cos 40◦ sin 40◦ T3 (sin 20◦ cos 40◦ + cos 20◦ sin 40◦ ) cos40◦ sin 60◦ = T2 cos 40◦ ! √ 3 √ 2 = 2WB cos 65◦ cos 40◦ ! √ 3 cos 65◦ = √ WB 2 cos 40◦ = = 67.6 N. ———————end—————— 4
© Copyright 2026 Paperzz