Notes 8.3 Conics Sections – The Hyperbola I. Introduction A.) The set of all points in a plane whose distances from two fixed points(foci) in the plane have a constant difference. 1.) The fixed points are the FOCI. 2.) The line through the foci is the FOCAL AXIS. 3.) The CENTER is ½ way between the foci and/or the vertices. B.) Forming a Hyperbola - When a plane intersects a double-napped cone and is perpendicular to the base of the cone, a hyperbola is formed. C.) More Terms 1.) A CHORD connects two points of a hyperbola. 2.) The TRANSVERSE AXIS is the chord connecting the vertices. It’s length is equal to 2a, while the semi-transverse axis has a length of a. 3.) The CONJUGATE AXIS is the line segment perpendicular to the focal axis. It’s length is equal to 2b, while the semi-conjugate axis has a length of b. D.) Pictures – By Definition P(x, y) Focus (x, y) Focus d2 d1 (-c, 0) Vertex (-a, 0) (c, 0) Vertex (a, 0) Pictures -ExpandedConjugate Axis Transverse Axis Focus (0, b) Focus (-c, 0) Focal Axis (c, 0) (0, -b) Vertex (-a, 0) Vertex (a, 0) a b Asymptotes are y x or y x b a E.) Standard Form - 2 2 x y 2 1 or 2 a b Where b2 + a2 = c2. 2 2 y x 2 1 2 a b F.) HYPERBOLAS - Center at (0,0) St. fm.. Focal axis Foci Vertices y2 x2 2 1 2 a b x2 y 2 2 1 2 a b x axis y axis c, 0 a, 0 0, c 0, a Semi-Trans. a a Semi-Conj. b b Pyth. Rel. c a b Asymptotes 2 2 b y x a 2 c a b 2 2 a y x b 2 G.) HYPERBOLAS - Center at (h, k) x h y k 1 a2 b2 2 St. fm.. yk Focal axis Foci Vertices 2 y k x h 1 a2 b2 2 2 xh h c, k h a, k h, k c h, k a Semi-Trans. a a Semi-Conj. b b Pyth. Rel. Asymptotes c a b b y x h k 2 2 a 2 c a b 2 2 2 a y x h k b II.) Examples A.) Ex. 1- Find the vertices and foci of the following hyperbolas: 1.) 3x 4 y 12 2 2 2.) y 3 9 x2 y2 1 4 3 Vertices = Foci = 2, 0 7, 0 2 x 2 4 2 1 Vertices = 2, 6 and (2, 0) Foci = 2,3 13 B.) Ex. 2- Find an equation in standard form of the hyperbola with 1.) foci (0,±15) and transverse axis of length 8. 2 2 y x 1 16 209 2.) Vertices (1, 2) and (1, -8) and conjugate axis of length 6. y 3 25 2 x 1 9 2 1 C.) Ex. 3 - Find the equation of a hyperbola with center at (0, 0), a = 4, e = 3 , and containing a vertical focal axis. 2 c 3 c e a 2 4 c a b 2 2 36 16 b c6 20 b 2 2 y x 1 16 20 2 2 2 III.) Discriminant Test A.) The second degree equation Ax Bxy Cy Dx Ey F 0 2 is 2 a hyperbola if B 2 4 AC 0 a parabola if B 2 4 AC 0 an ellipse if B 2 4 AC 0 except for degenerate conics B.) Ex. 1 – Identify the following conics: 1.) 2 x 3 y 12 x 24 y 60 0 2 2 B 2 4 AC 0 4 2 3 0 Hyperbola 2.) 10 x 8 xy 6 y 8 x 5 y 30 0 2 2 B 2 4 AC 64 4 10 6 0 Ellipse
© Copyright 2025 Paperzz