OKAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK TEMEL BİLİMLERİ BÖLÜMÜ 2016–17 Spring MATH115 Basic Mathematics – Homework 3 Solutions 11. (a) We calculate that N. Course ds 8 d 2 = −2t−1 + 4t−2 = 2t−2 − 8t−3 = 2 − 3 . dt dt t t (b) Note first that w = (z + 1)(z − 1)(z 2 + 1) = (z 2 − 1)(z 2 + 1) = z 4 − 1. Therefore w0 = d 4 dz (z − 1) = 4z 3 and w00 = d 3 dz 4z = 12z 2 . (c) By the product rule d dy = (2x + 3)ex = (2x + 3)0 ex + (2x + 3)(ex )0 = 2ex + (2x + 3)ex = (2x + 5)ex . dx dx d sin x + cos x ds d d (sin x + cos x) sec x = = = (tan x + 1) = sec2 x. 12. (a) dx dx dx cos x dx dr d θ sin θ + cos θ = sin θ + θ cos θ − sin θ = θ cos θ. (b) By the product rule = dθ dθ 13. By the quotient rule, db u0 v − uv 0 (x2 − 1)0 (x2 + x − 2) − (x2 − 1)(x2 + x − 2)0 = = dx v2 (x2 + x − 2)2 2 2 2x(x + x − 2) − (x − 1)(2x + 1) = (x2 + x − 2)2 3 2 (2x + 2x − 4x) − (2x3 + x2 − 2x − 1) = (x2 + x − 2)2 2 x − 2x + 1 (x − 1)2 1 = 2 = = . (x + x − 2)2 (x − 1)2 (x + 2)2 (x + 2)2 14. (a) By the Chain Rule, ds d = dt dt (b) First note that we find that d dt −10 −11 −11 t t d t t −1 = −10 −1 − 1 = −5 −1 . 2 2 dt 2 2 5 sin t 3 = 5 3 cos dy d d = (cos u) dt du dt t 3 by the Chain Rule. Using the Chain Rule a second time, t 5 t t 5 sin = − sin 5 sin cos . 3 3 3 3 15. (a) First we calculate that d p d √ d 1 2 − 2x 1−x g 0 (x) = 2x − x2 = u (2x − x2 ) = √ (2 − 2x) = √ =√ . 2 dx du dx 2 2 2 2x − x 2x − x2 We can see that g 0 exists on (0, 23 ) and we can see that g 0 (x) = 0 if and only if x = 1. Therefore x = 1 is the only critical point of g. √ √ (b) We calculate g(0) = 0 − 0 = 0, g(1) = 2 − 1 = 1 and g 3 2 = q 3− 9 4 = q 3 4 ≈ 0.866. Therefore the absolute maximum value of g is 1 which occurs at x = 1; and the absolute minimum value of g is 0 which occurs at x = 0. www.neilcourse.co.uk/math115.html 1
© Copyright 2026 Paperzz