9-2 Add and Subtract Radical Expressions Name Date Simplify: ⫺7 2 ⫹ 8 11 ⫹ 16 2 ⫺ 13 11 ⫺7 2 ⫹ 8 11 ⫹ 16 2 ⫺ 13 11 Identify like radicands. (⫺7 2 ⫹ 16 2 ) ⫹ (8 11 ⫺ 13 11) (⫺7 ⫹ 16) 2 ⫹ (8 ⫺ 13) 11 9 2 ⫺ 5 11 Use the Commutative and Associative Properties of Equality. Apply the Distributive Property. These terms have unlike radicands. Do not combine. Simplify: 11 50 x 2 ⫹ 4x3 8 x 4 ⫺ 7x 28 x 8 ⫺ 3 32 x 2 11 25 x 2 • 2 ⫹ 4x3 4 x 4 • 2 ⫺ 7x 4 x 8 • 7 ⫺ 3 16 x 2 • 2 11 25 x 2 • 2 ⫹ 4x3 4 x 4 • 2 ⫺ 7x 4 x 8 • 7 ⫺ 3 16 x 2 • 2 11(5 | x | 2 ) ⫹ 4x3(2x2 2 ) ⫺ 7x(2x4 7) ⫺ 3(4 | x | 2 ) 55|x| 2 ⫹ 8x5 2⫺ 14x5 7 ⫺ 12|x| 2 8x5 2 ⫺ 14x5 7⫹ (55 | x | 2 ⫺ 12|x| 2 ) 8x5 2⫺ 14x5 7⫹ (55 | x | ⫺ 12|x|) 2 8x5 2 ⫺ 14x5 7 ⫹ 43 | x | 2 Factor out perfect squares in the radicand, wherever possible. Use the Product Property of Square Roots. Simplify. Identify like radicands and like terms. Use the Commutative Property of Equality. Apply the Distributive Property. Simplify. Simplify each expression. (Hint: a x ⫾ b x ⫽ ( a ⫾ b) x , where a and b ⱖ 0.) 1. 6 7 ⫺ 4 13 ⫹ 9 7 ⫹ 11 13 2. 5 14 ⫺ 2 10 ⫹ 3 14 ⫹ 14 10 (14 10 2 10) (5 14 3 14) (14 2) 10 (5 3) 14 (6 7 9 7) (4 13 11 13) (6 9) 7 (4 11) 13 12 10 8 14 15 7 7 13 Copyright © by William H. Sadlier, Inc. All rights reserved. 3. 26 ⫺ 3 21 ⫹ 7 2 ⫹ 18 4. 15 ⫺ 4 30 ⫹ 22 ⫹ 8 3 (26 18) 3 21 7 2 (15 22) 3 30 7 3 44 3 21 7 2 5. 9 12 ⫺ 7 63 ⫹ 8 75 ⫹ 3 28 37 4 30 8 3 6. 5 18 ⫺ 11 125 ⫹ 4 98 ⫹ 2 180 9 4 • 3 7 9 • 7 ) 8 25 • 3 3 4 • 7 18 3 40 3 21 7 6 7 5 9 • 2 11 25 • 5 4 49 • 2 2 36 • 5 15 2 28 2 55 5 12 5 58 3 15 7 7. ⫺9 448 ⫺ 5 1300 ⫹ 8 325 ⫹ 6 700 43 2 43 5 8. ⫺6 405 ⫺ 7 1500 ⫹ 4 735 ⫹ 2 500 9(8) 7 5(10) 13 8(5) 13 6(10) 7 72 7 60 7 50 13 40 13 6(9) 5 7(10) 15 4(7) 15 2(10) 5 54 5 20 5 70 15 28 15 12 7 10 13 9. 2366 ⫹ 1183 ⫺ 847 ⫺ 686 13 14 7 14 13 7 11 7 6 14 2 7 34 5 42 15 10. 6615 ⫺ 6250 ⫹ 3840 ⫺ 2890 21 15 16 15 25 10 17 10 Lesson 9-2, pages 228–229. 37 15 42 10 Chapter 9 223 For More Practice Go To: Simplify each expression. a ⫺7 5 3 a (3 1) 12. 6 b ⫺ 8 3 ⫹ a 2 5 7 5 a (2 7) 5 6 b b 8 3 11 3 (6 1) b (8 11) 3 4 a9 5 7 b 19 3 13. 2d ⫺ 11 99 ⫺ 5d ⫹ 4 704 14. 8f ⫺ 6 288 ⫺ 17f ⫹ 3 800 2d 5d 11 9 • 11 4 64 • 11 3d 33 11 32 11 8f 17f 6 144 • 2 3 400 • 2 9f 72 2 60 2 3d 11 9f 12 2 15. 9 | n | 17 ⫺ 5 17 n2 ⫹ 11 | n | 272 16. 12|m| 19 ⫺ 6 19 m 2 ⫹ 8 | m | 1216 9 | n | 17 5 | n| 17 11 | n | 16 • 17 4 | n | 17 44 | n | 17 12 | m | 19 6 | m | 19 8 | m | 64 • 19 6 |m| 19 64 |m| 19 48n 17 70m 19 17. 3y2 25 ⫺ 12 | y | 24 y ⫹ 9 | y | 54 18. 11 | x | 36 ⫺ 4x2 63x ⫹ 10 | x | 72 x 15y2 12 | y | 4 • 6 y 9 | y | 9 • 6 15y2 66 | x | 4x2 9 • 7 x 10 | x | 36 • 2 x 66 | x | 12x2 7 x 60 | x | 2 x 24 | y | 6y 27 | y | 6 2 19. 3 189 ⫹ 0.2 450 x 2 ⫹ 8 | x | 128 4 20. 5 1250 ⫹ 0.4 300 a 2 ⫹ 7 | a | 147 2 21 0.2(3 • 5) | x | 2 8 | x | 64 • 2 2 21 3 | x | 2 64 | x | 2 4 625 • 2 4 | a | 3 49 | a | 3 5 2 21 67 | x | 2 20 2 53a 3 21. Geometry The perimeter of a rectangle is 42 2 ⫹ 18 5. If the width of the rectangle is 7 2 ⫹ 3 5, what is the length? 22. Two numbers have a sum of 17 11 and a difference of 11. What are the numbers? Reason logically; Let p perimeter, ᐉ length, w width; p 2ᐉ 2w; Substitute: 42 2 18 5 2ᐉ 2(7 2 3 5) 2w is (7 2 3 5) (7 2 3 5) 14 2 6 5 Solve for 2ᐉ: 2ᐉ 42 2 18 5 (14 2 6 5) 28 2 12 5; Note: Because (14 2 6 5) (14 2 6 5) 28 2 12 5, ᐉ 14 2 6 5 So the length of the rectangle is 14 2 6 5. 23. Which radical expression is equivalent to 4 3x ⫹ 8? A. 2 12 x ⫹ 16 B. C. D. 2 12 x ⫹ 224 b ⫺ 11 3 36 x ⫹ Chapter 9 64 36 x ⫹ 16 64 Guess and Test: 9 11 8 11 17 11 and 9 11 8 11 11 The numbers are 9 11 and 8 11. Copyright © by William H. Sadlier, Inc. All rights reserved. 11. 3 a ⫺ 2 5 ⫹
© Copyright 2025 Paperzz