MATHEMATICS 226, FALL 2016, PROBLEM SET 4 – SOLUTIONS Section 12.4, Question 11: 6 marks We have fx (x, y) = fxx (x, y) = and by symmetry fyy (x, y) = x2 2x 2y , fy (x, y) = 2 , 2 +y x + y2 2(x2 + y 2 ) − 2x · 2x 2y 2 − 2x2 = , (x2 + y 2 )2 (x2 + y 2 )2 2x2 −2y 2 . (x2 +y 2 )2 Therefore fxx (x, y) + fyy (x, y) = 2y 2 − 2x2 2x2 − 2y 2 + = 0. (x2 + y 2 )2 (x2 + y 2 )2 Section 12.4, Question 17: 6 marks We have x2 1 x2 1 2 2 2 2 ut = − t−3/2 e−x /4t + t−1/2 e−x /4t · 2 = − 3/2 e−x /4t + 5/2 e−x /4t 2 4t 2t 4t x x 2 ) = − 3/2 e−x /4t 2t 2t x x 1 x2 1 2 2 2 2 uxx = − 3/2 e−x /4t − 3/2 e−x /4t (− ) = − 3/2 e−x /4t + 5/2 e−x /4t 2t 2t 2t 2t 4t so that ut = uxx . ux = t−1/2 e−x 2 /4t (− Section 12.5, Question 17: 6 marks We have ∂ f (t sin s, t cos s) = f1 sin s + f2 cos s ∂t ∂2 ∂ f (t sin s, t cos s) = sin s f1 (t sin s, t cos s) + cos sf1 ∂s∂t ∂s ∂ + cos s f2 (t sin s, t cos s) − sin sf2 ∂s = sin s(t cos sf11 − t sin sf12 ) + cos sf1 + cos s(t cos sf21 − t sin sf22 ) − sin sf2 = t sin t cos t(f11 − f22 ) + t(cos2 s − sin2 s)f12 + cos sf1 − sin sf2 . with all derivatives evaluated at (t sin s, t cos s).At the last step we used that f12 = f21 . 1 Section 12.5, Question 19: 6 marks We have ∂ f (y 2 , xy, −x2 ) = yf2 − 2xf3 ∂x ∂2 ∂ f (y 2 , xy, −x2 ) = yf2 (y 2 , xy, −x2 ) − 2xf3 (y 2 , xy, −x2 ) ∂y∂x ∂y = f2 + 2y 2 f21 + xyf22 − 4xyf31 − 2x2 f32 with all derivatives evaluated at (y 2 , xy, −x2 ). Section 12.5, Question 23: 8 marks We have ∂z ∂z ∂z ∂z ∂z ∂z = es cos t + es sin t , = −es sin t + es cos t ∂s ∂x ∂y ∂t ∂x ∂y ∂z ∂z ∂ 2z s s = e cos t + e sin t ∂s2 ∂x ∂y 2 ∂ z ∂ 2z s s s + e cos t e cos t 2 + e sin t ∂x ∂y∂x 2 ∂ 2z ∂ z s s s + e sin t 2 + e sin t e cos t ∂x∂y ∂y ∂z ∂z ∂ 2z = −es cos t − es sin t 2 ∂t ∂x ∂y 2 ∂ z ∂ 2z s s s − e sin t − e sin t 2 + e cos t ∂x ∂y∂x 2 ∂ z ∂ 2z + es cos t − es sin t + es cos t 2 ∂x∂y ∂y ∂ 2z ∂ 2z ∂ 2z ∂ 2z ∂ 2z ∂ 2z 2s 2 2 2 2 + = e (cos t + sin t) + = (x + y ) + ∂s2 ∂t2 ∂x2 ∂y 2 ∂x2 ∂y 2 Section 12.6, Question 7: 6 marks The differential is dz = 2xe3y dx + 3x2 e3y dy. At (3, 0), we have z = 9, so that at (3.05, −0.02) we have z ≈ 9 + dz = 9 + 6dx + 27dy = 9 + 6(0.05) + 27(−0.02) = 8.76 2 Section 12.6, Question 11: 6 marks Let x, y, z denote the edges of the box, then we have |dx| ≤ 0.01x, |dy| ≤ 0.01y, |dz| ≤ 0.01z. (a) V = xyz so dV = yzdx+xzdy +xydz, |dV | ≤ yz(0.01x)+xz(0.01y)+xy(0.01z) = 0.03V . The maximum percentage error is 3%. (b) A = xy so dA = ydx + xdy, |dA| ≤ y(0.01x) + x(0.01y) = 0.02A. The maximum percentage error is 2%. (c) D2 = x2 + y 2 + z 2 so 2DdD = 2xdx + 2ydy + 2zdz, |2DdD| ≤ 2x(0.01x) + 2y(0.01y) + 2z(0.01z) = 0.02D2 and |dD| ≤ 0.01D. The maximum percentage error is 1%. Note: Instead of the inequalities |dx| ≤ 0.01x etc., the solution manual simply plugs in the maximal error dx = 0.01x. Strictly speaking, this requires an additional justification, but since several solved examples in the textbook are done similarly, I will accept such solutions as correct and give full credit for them. Section 12.6, Question 19: 6 marks 2x z y 4 1 2 Df = , Df (2, 2, 1) = − ln z 2y −x/z 0 4 −2 −0.02 dx 6 4 1 2 0.01 f (1.98, 2.01, 1.03) ≈ f (2, 2, 1) + Df (2, 2, 1) dy = + 4 0 4 −2 dz 0.03 6 −0.01 5.99 = + = 4 −0.02 3.98 3
© Copyright 2026 Paperzz