Lesson 2 – Factoring Polynomials (cont`d) Perfect Square Trinomials

Mathematics 506 - Technical & Scientific Option
Lesson 2 – Factoring Polynomials (cont’d)
Methods:
5)
Perfect Square Trinomials
6)
Completing the Square
7)
Roots Method
Perfect Square Trinomials
A trinomial is a perfect square when the middle term is equal to twice the product of the square roots of
the end terms.
π‘Ž2 + 2π‘Žπ‘ + 𝑏 2 = (π‘Ž + 𝑏)2
Ex.
OR
9π‘₯ 2 + 12π‘₯ + 4
π‘Ž2 = 9π‘₯ 2 ⟹ π‘Ž = 3π‘₯
𝑏2 = 4
⟹ 𝑏=2
⟹ 2π‘Žπ‘ = 2 3π‘₯ 2 = 12π‘₯
∴ 9π‘₯ 2 + 12π‘₯ + 4 = (3π‘₯ + 2)2
3π‘₯ + 2 3π‘₯ + 2
Verify:
= 9π‘₯ 2 + 6π‘₯ + 6π‘₯ + 4
= 9π‘₯ 2 + 12π‘₯ + 4
Ex.
9π‘₯ 2 βˆ’ 12π‘₯ + 4
π‘Ž2 = 9π‘₯ 2 ⟹ π‘Ž = 3π‘₯
𝑏2 = 4
⟹ 𝑏=2
⟹ 2π‘Žπ‘ = 2 3π‘₯ 2 = 12π‘₯
∴ 9π‘₯ 2 βˆ’ 12π‘₯ + 4 = (3π‘₯ βˆ’ 2)2
π‘Ž2 βˆ’ 2π‘Žπ‘ + 𝑏 2 = (π‘Ž βˆ’ 𝑏)2
Mathematics 506 - Technical & Scientific Option
Completing the Square
If the trinomial is not a perfect square we can complete the square by adding a constant.
NB:
This method only works when the coefficient of π‘₯ 2 is 1. If it is not, the expression must be
factored (or the equation must be divided by the coefficient) before we can complete the
square.
Ex.
2π‘₯ 2 βˆ’ 12π‘₯ + 8 = 2(π‘₯ 2 βˆ’ 6π‘₯ + 4)
To complete the square π‘₯ 2 + 𝑏π‘₯, add the square of half the coefficient of π‘₯ (ie.
𝑏 2
)
2
to create a perfect
square. We must also subtract this same constant from the expression.
π‘₯ 2 + 𝑏π‘₯ +
Ex.
𝑏 2
2
βˆ’
𝑏 2
2
𝑏
+ 𝑐 = (π‘₯ + 2 )2 βˆ’
𝑏 2
2
+ 𝑐5
2π‘₯ 2 βˆ’ 12π‘₯ + 8
= 2(π‘₯ 2 βˆ’ 6π‘₯ + 4)
Step 1: Make the coefficient of π‘₯ 2 =1.
Step 2: Find
𝑏 2
2
=
βˆ’6 2
2
= 2[(π‘₯ 2 βˆ’ 6π‘₯ + 9) βˆ’ 9 + 4]
Step 3: Add (and subtract ) this constant.
= 2[(π‘₯ βˆ’ 3)2 βˆ’ 5]
Step 4: Factor the perfect square.
= 2(π‘₯ βˆ’ 3)2 βˆ’ 10
Step 5: Simplify
This method is used mainly when solving equations.
Ex.
=9
2π‘₯ 2 βˆ’ 12π‘₯ + 8 = 0
2(π‘₯ βˆ’ 3)2 βˆ’ 10 = 0
Factor as explained above
2(π‘₯ βˆ’ 3)2 = 10
Solve for π‘₯
(π‘₯ βˆ’ 3)2 = 5
π‘₯βˆ’3=± 5
Case 1: π‘₯ βˆ’ 3 = 5
π‘₯ =3+ 5
Case 2:
π‘₯βˆ’3=βˆ’ 5
π‘₯ =3βˆ’ 5
Mathematics 506 - Technical & Scientific Option
Roots Method
Any second degree trinomial (π‘Žπ‘₯ 2 + 𝑏π‘₯ + 𝑐) can be factored if and only if the discriminant  is positive
or zero, where
= 𝑏 2 βˆ’ 4π‘Žπ‘
If  β‰₯ 0 then π‘Žπ‘₯ 2 + 𝑏π‘₯ + 𝑐 = π‘Ž π‘₯ βˆ’ π‘₯1 π‘₯ βˆ’ π‘₯2
and
π‘₯1 =
βˆ’π‘+ β–³
2π‘Ž
=
βˆ’π‘+ 𝑏 2 βˆ’4π‘Žπ‘
2π‘Ž
This method is also mainly used to solve equations.
π‘₯2 =
βˆ’π‘βˆ’ β–³
2π‘Ž
=
βˆ’π‘βˆ’ 𝑏 2 βˆ’4π‘Žπ‘
2π‘Ž