Math 3C (21945) HW #8 Due at the beginning of lecture on Thursday, April 23rd. In order to receive a ✓ , you must attempt all problems and write out all steps leading to your answers neatly and legibly. You cannot simply write the correct answer to demonstrate your mathematical understanding. You must include your name, the course title and section number on the @irst page. All homework sets must be stapled. No late homework will be accepted without my express permission. You may receive a ✗ if these guidelines are not followed. Good luck! Evaluate the integral. 4 3 8 1) xyz dx dy dz 0 0 0 ∫ ∫ ∫ 2) 3 ∫ ∫ 0 3) 4(1 - z/3) 0 1 7(1 - y/4 - z/3) dx dy dz 2) 0 1 ∫ ∫ ∫ -1 ∫ 1) 0 4 (x2 + y 2 + z2) dx dy dz 3) 0 Find the volume of the indicated region. 4) the region bounded by the cylinder x2 + y 2 = 9 and the planes z = 0 and x + z = 9 4) 5) the region common to the interiors of the cylinders x2 + y 2 = 36 and x2 + z2 = 36 5) Evaluate the integral by changing the order of integration in an appropriate way. 1 4 4 x sin z dz dy dx 6) z 0 0 y ∫ ∫ ∫ 7) 7 0 8) 7 ∫ ∫ ∫ y 8 0 2 ∫ ∫ ∫ 0 1 ! 6) sin z sin x dz dx dy x 7) 3 ey dy dz dx z 8) 1 x/8 Solve the problem. 9) Set up the triple integral for the volume of the sphere ! = 3 in spherical coordinates. 1 9) 10) Set up the triple integral for the volume of the sphere ! = 4 in cylindrical coordinates. 10) # 11) Let D be the region that is bounded below by the cone " = and above by the sphere 4 11) ! = 5. Set up the triple integral for the volume of D in cylindrical coordinates. Evaluate the spherical coordinate integral. ! ! 5 sin " 12) #2 sin " d# d" d$ 0 0 0 ∫ ∫ ∫ 13) ∫ 8! 0 ! ∫ ∫ 0 (1 - cos ")/2 12) #2 sin " d# d" d$ 13) 0 Use spherical coordinates to find the volume of the indicated region. 14) the region bounded above by the sphere x2 + y 2 + z2 = 64 and below by the cone 14) x2 + y 2 z= # # 15) the region inside the solid sphere ! ≤ 3 that lies between the cones " = and " = 3 2 16) the region that lies inside the sphere x2 + y 2 + z2 = 49 and outside the cylinder x2 + y 2 = 36 15) 16) Change the order of integration and evaluate the integral. ! (1 - cos ")/2 10! 17) #2 sin " d$ d# d" 0 0 0 17) Solve the problem. 18) Find the center of mass of the rectangular solid of density !(x, y, z) = xyz defined by 0 ≤ x ≤ 9, 0 ≤ y ≤ 10, 0 ≤ z ≤ 3. 18) ∫ ∫ ∫ 19) Find the center of mass of the region of density !(x, y, z) = 1 bounded by the 4 - x2 - y 2 19) paraboloid z = 4 - x2 - y 2 and the xy-plane. Use the given transformation to evaluate the integral. 20) x = 8u, y = 4v, z = 7w; ∫∫∫ 20) x2y 2 dx dy dz, R 2 2 2 where R is the interior of the ellipsoid x + y + z = 1 64 16 49 2 21) u = 2x + y - z, v = -x + y + z, w = -x + y + 2z; ∫∫∫ 21) (2x + y - z) dx dy dz, R where R is the parallelepiped bounded by the planes 2x + y - z = 2, 2x + y - z = 4, -x + y + z = 8, -x + y + z = 10, -x + y + 2z = 7, -x + y + 2z = 10 3 Answer Key Testname: M3C_HW_8 1) 1152 2) 14 3) 48 4) 81! 5) 1152 1 - cos 4 6) 2 7) 2(1 - cos 7) 8 8) ln 2 (e - 1) 3 9) ∫ 2! ! 0 ∫ ∫ 10) ∫ 0 2! ∫ ∫ ∫ 0 2! 0 ∫ "2 sin # d" d# d$ 0 4 0 11) 3 - 16 - r2 r dz dr d$ 16 - r2 5/ 2 0 ∫ 25 - r2 r dz dr d$ r 125 2 12) ! 8 13) 4 ! 3 14) 512 !(2 3 2) 15) 9! 16) 4(343 - 133/2)! 3 17) 5 ! 3 18) x = 6, y = 20 ,z=2 3 19) x = 0, y = 0, z = 1 2 20) 128 ! 15 21) 12 4
© Copyright 2026 Paperzz