n. 586 January 2017 ISSN: 0870-8541 The Method of Market Multiples on the Valuation of Companies: A Multivariate Approach 1 José Couto 1,2 Paula Brito 1 António Cerqueira 1 FEP-UP, School of Economics and Management, University of Porto 2 LIAAD/INESC TEC The Method of Market Multiples on the Valuation of Companies: A Multivariate Approach José Couto Faculdade de Economia, Universidade do Porto, Portugal [email protected] Paula Brito Faculdade de Economia & LIAAD INESC TEC, Universidade do Porto, Portugal [email protected] António Cerqueira Faculdade de Economia, Universidade do Porto, Portugal [email protected] Dezembro, 2016 Abstract. The main goal of this study is to investigate, using multivariate analysis, the possibility of defining comparable firms as those with economic and financial characteristics closest to the company under evaluation, rather than adopting the "same industry" criterion, and thereby improve the estimation errors when the multiples valuation process is used to estimate the enterprise value and the market capitalization of a company. The analysis is performed running formal tests to compare mean values of the distributions of errors. The results obtained using cluster analysis reveal that considering comparable companies as those with economic and financial ratios closer to the company under evaluation generally reduces the mean of the estimation errors for almost all groups of ratios considered. For those groups for which the improvement is not significant, the results are similar to those obtained using the industry membership criterion. Keywords: Cluster Analysis; Estimation Errors; Relative Valuation; Method of Multiples; Market Multiples Classification-JEL: G32; G12; G14, C38 1 1 Introduction Multiples are an important tool used by many analysts, investors, researchers and other public interested in the valuation of assets or generally interested in the stock market. Despite the solid and extensive literature on valuation methodologies such as the Dividend Cash Model (DDM) or the Discounted Cash Flow (DCF), multiples are frequently used to translate the results of such methodologies into intuitive figures (implied multiples), in combination with those acknowledged methods (on the perpetuity of those models) or as an alternative to estimate the value of a company in an easier and faster way. Among professionals, multiples are already an accepted tool, but in the academic world they are still considered a subjective and understudied approach, which means that their coverage in the financial analysis courses is limited, what ultimately threatens its credibility (Bhojraj & Lee, 2002, p. 408). Multiples appear frequently in all kinds of valuation reports, on fairness opinions documents, on business newspapers and websites - they even appear in some M&A offers. Their widespread use can be attributed to their simplicity (Schreiner, 2007a, p. 1). A multiple is simply a ratio, obtained dividing the market or estimated value of an asset by a specific item of the financial statements or other measure. Multiples are thus easier to explain to clients by the professionals than the fundamental analysis methods. However, this apparent simplicity is quite illusory, as all the explicit assumptions needed during the fundamental analysis are still implicitly synthetized in the multiples, such as the risk, growth, potential cash-flows as well as the market mood. The method of multiples, also known as the four-step process, consists in the following: 1) select a sample of comparable companies; 2) choose and compute a multiple for those comparables; 3) aggregate those multiples into a single figure using a central statistics, such as the mean, the median, the harmonic mean or the geometric mean; 4) apply the aggregated multiple of comparables to the corresponding value of the firm under analysis in order to estimate its value. Each of these steps raises a complex issue that requires a decision in order to be implemented. This study is motivated by the idea that it is possible to rely on the proximity of the economic and financial characteristics, rather that the “same industry” criterion, in order to select a set of comparables (1st step). We also study the impact of choosing among different multiples (2nd step) as well as the impact of the aggregation measure (3rd step). 2 In order to structure our research we address the following questions: Q1: What ratios are closely associated with each multiple?; Q2: What is the best measure to aggregate the information of each multiple (mean, median, harmonic mean or geometric mean)?; Q3: Does the adoption of the closest financial characteristics criterion improve the estimation errors when compared to the same-industry criterion? We tackle the first issue studying the correlation coefficients between ratios and multiples. The second and third issues are approached comparing the valuation errors under the different calculation procedures. In the next section we examine the literature review, linking it with the issues related to each of the four steps mentioned above. The third section explores the methodology and the data building process. The fourth section presents the empirical results and the fifth and last one brings together the findings of this work. 2 Literature Review The literature concerning multiples is scarce and very fragmented in its findings. A broad and consistent over time study has not been done yet. The different focus on different multiples (e.g. P/E vs PBV) and the different assumptions on the operationalization of the four-step process (e.g. the choice among different aggregation measures), make the comparison of results difficult. Therefore an important work, in order to standardize the methodological process of carrying out these studies, or, alternatively, a theoretical framework that allows understanding the impact of such changes on the results, is still lacking. Choosing the multiple: Kim & Ritter (1999), studying multiples on IPOs valuations in the US between 1992 and 1993, conclude that forward-looking P/E multiples outperform historical P/E multiples. They also find that estimation errors are smaller for older companies than for young companies (less than 10 years). Liu, Nissim, & Thomas (2002) find also that forward P/E multiples perform better than trailing P/E, cash-flows measures (EBITDA, CFO) and PBV are tied in third place, sales achieves the worst place. The finding that both P/E outperform cashflow measures is contrary to the belief presented in some standard books, CFO (Cash-Flow from Operations) performing considerably worse than EBITDA. Herrmann & Richter (2003), for a sample of European and US firms, investigate the accuracy of a set of multiples concluding that, for the non-financial-services firms, P/E is a much better multiple than all the other investigated multiples if they are not controlled for growth and profitability. Controlling comparables for those factors instead of using the same SIC code, 3 improves the accuracy of multiples, which may be ranked as follows: P/E, EV/EBIAT, PBV, EV/EBIDAAT, EV/TA e EV/S. Schreiner (2007a) examining a set of companies from the DJ Stoxx 600 (Europe) and the SP&P 500 (US) finds that equity value multiples outperform entity multiples, knowledge multiples (created by the author) outperform traditional multiples and two-year forward P/E multiple outperform trailing multiples. He also suggests that the findings regarding the best multiple depend on the set of companies: for the European companies the two-year forward P/EBT multiple ranks first and the one-year forward P/E ranks second, while for the US companies the two-year forward P/E ranks first and the one-year forward P/EBT follows it – this may occur due to different corporate tax laws in Europe, according to the author. Choosing comparables: Alford (1992) who is one the first authors to study this subject, examines the accuracy of the P/E multiple when comparables are chosen on the basis of SIC codes, size (proxy for risk) and return on equity (proxy for growth). He finds that using a threedigit SIC code to select comparables is preferable to a broader code but no improvement occurs when the four-digit code is chosen. Choosing comparables based on risk and growth together perform similarly well but using those variables separately does not perform well. The author also concludes that further controls on the industry membership such as size, growth or leverage (using the EV/EBIT) do not improve prediction errors significantly. Kim & Ritter (1999) conclude that investment bankers are able to improve the valuation accuracy of P/E multiples selecting comparables than just automatically using the same industry SIC code. Bhojraj & Lee (2002) study the possibility of selecting comparables using a multiple regression approach based on underlying economic variables, in order to attribute a warranted multiple to each company. These warranted multiples are then used to select comparables as those with the closest warranted multiple. They conclude that this method improves the prediction errors comparing to the industry and size matches. This technique is used for the EV/S and PBV multiples but the best set of comparables is not necessarily the same for both multiples, this is an important finding for our study as we shall see. Dittmann e Weiner (2005) investigate the comparables selection method when using EV/EBIT multiple to estimate the value of companies, finding that selecting comparables based on similar return on assets clearly outperforms a selection based on industry membership (preferably the same four-digit SIC code) or total assets. These authors study if the set of comparables should be picked from the same country, region or from all OECD countries, concluding that for most 15 EU countries 4 comparables should be selected from the same region, except for the UK, Denmark, Greece and the US where comparables should be selected only from the same country. Herrmann & Richter (2003) consider comparables as those that deviate less than 30% from certain control factors concluding that this approach is a better method instead of using the SIC classification. Those factors are derived from valuation models for the following multiples: P/E (factors: roe and earnings growth), EV/EBIAT (factors: roic and earnings growth), P/B (factors: roe and earnings growth), EV/TA (factors: roic and earnings growth), EV/S (factors: EBIAT/S, S/IC and earnings growth) and EV/EBIDAAT (EBIAT/EBIDAAT and EBIDAAT/IC). This finding suggests the SIC code approach does not contain superior information to that controlled using derived factors. An alternative regression approach to P/E and PBV multiples using the above factors does not improve the accuracy. Cooper & Cordeiro (2008) investigate the effect of increasing the number of comparables on the accuracy of the forward P/E multiple. They discover that using a selection rule based on the proximity of the expected earnings growth, ten companies are enough on average to deliver the same accuracy as using the entire set from the same industry. They suggest that it is better to use a small number of comparables with closest growth rates than to use the entire set; more firms introduce on average more noise. The aggregation measure: Studies performed by Liu, Nissim, & Thomas (2002) and Baker & Ruback (1999) suggest that the harmonic mean is the best central tendency measure to adopt on valuation multiples. However, Herrmann & Richter (2003) disagree with this view suggesting the median as the best aggregation measure, mainly when we deal with a heterogeneous sample. These latter authors argue that in homogeneous samples the harmonic mean leads to similar results than the median but in heterogeneous samples the harmonic mean regularly underestimates the company’s value. The arithmetic mean is presented as a poor aggregation measure in all examined studies, leading consistently to the overestimation of firm’s value due to the right skewed nature of multiples distributions. Combination of multiples: Cheng & McNamara (2000) examine the accuracy of P/E and PBV multiples separately and a combination of both. They find that for both multiples using the same SIC classification combined with the ROE is the best method to select comparables but if a combined P/E-PBV is computed, then the same industry membership is enough. This P/E-PBV method (computed using equal weights) performs better than P/E and PBV alone, but comparing both multiples alone P/E performs better. 5 Yoo (2006) examines the possibility of combining several multiples valuations to improve the accuracy of the simple valuation technique. He finds that using a combination of historical multiples reduces the valuation errors but that combination should not include the forward P/E. This means that historical multiples do not increment information to a forward P/E valuation but that combination improves historical multiples, so it should be performed when forwardlooking information is not available. To calculate the weight of each multiple valuation Yoo (2006) conducts a linear regression approach, obtaining the following overall rank of weights: P/E, PBV, P/EBITDA and P/S. Schreiner (2007a) finding support for the existence of industrypreferred multiples, seeks a combination of those with the PBV multiple for five European key industries. This two-factor model approach delivers different weights for each multiple depending on the analysed industry. The proposed weights are determined minimizing valuation errors for each industry. The results suggest that the two-factor model adds value to the “oils & gas”, “health care” and “banks” industries but no value is added to the “industrial goods & services” and “telecommunications” industries because the PBV proposed weight equals zero. Determinants of multiples: Damodaran (2002) deduces analytically the determinants of various multiples, relying on valuation models, and promotes the use of regression analysis to determine a firm’s value. However, that approach fails empirical tests since it faces multicollinearity issues and a non-Normal distribution of regression residuals (Schreiner, 2007a, pp. 75-76). Herrmann & Richter (2003) and Schreiner (2007a) also deduce similar factors from models such as the DDM, the DCF and the RIV model. It can be inferred, from the above, that an intrinsic relationship between all multiples and a set of determinants, more or less popular (e.g. Herrmann & Richter’s EV/EBIAT multiple), can be determined. It also becomes clear that those determinants depend on the model we are dealing with, thus different determinants arising from different models for the same multiple can hardly be put together from a theoretical point of view. Besides, those derivations are laborious and give no guarantee of empirical success. As we want to study a large set of multiples we chose an empirical approach to identify the relations between valuation multiples and economic and financial ratios. That’s what we conduct over the next sections: in Section 3 we formulate the methodology of that work, in Section 4 we present the data to which it will be applied, so that over Section 5 we present the empirical results. 6 3 Methodology To investigate the empirical relationships between 17 valuation multiples and a large set of popular economic and financial ratios we analysed the corresponding correlation coefficients. Implementation of the method: To perform the method of market multiples, we divided our sample randomly into two sets: the Training Group (with 70% of the entire sample) and the Test Group (containing the remaining 30% of the sample). The Training Group was meant to provide the set of comparable firms. The Test Group was meant to be the group of firms whose value is estimated relying on the comparable firms (Training Group). These estimated multiples will then be used to compute the valuation errors. To identify the comparable firms from the Training Group to match with the Test Group we adopted the criterion of proximity of certain ratios. These ratios were previously grouped according to their correlation intensity with the valuation multiples. Then, using those groups of ratios, we performed clustering analysis on the Training Group to identify the natural clusters. For each cluster we computed the mean, median, harmonic mean and geometric mean of all studied multiples. The matching of each company from the Test Group to each cluster of the Training Group was made according to the proximity of the economic and financial ratios. We also matched each company from the Test Group to the Training Group according to the same-industry criterion. Then the measures of central tendency of each multiple from the Training Group were attributed to the firms of the Test Group, this was made using all of the four ICB levels. Definition of the estimation errors: To decide which of the strategies better suits the purpose of the method of market multiples, we computed the absolute valuation errors for each firm using the following formula: 𝐸𝑟𝑟𝑜𝑟𝑦,𝑖𝑡 = | 𝑚 ̂ 𝑦,𝑖𝑡 − 𝑚𝑦,𝑖𝑡 𝑚 ̂ 𝑦,𝑖𝑡 |=| − 1| 𝑚𝑦,𝑖𝑡 𝑚𝑦,𝑖𝑡 (3.1) where m ̂ y,it is the estimated market multiple, my,it is the observed market multiple, y is the multiple we are dealing with (e.g. P/S, PBV,…), 𝑖 indicates the firm and 𝑡 is the year. The study of the distributions of the absolute valuation errors, running formal tests, allows deciding which strategy delivers better results. We compared all the equity multiples among themselves but separately from the entity multiples because their underlying variable is different. Absolute valuation errors of equity multiples compares the deviation on the equity 7 variable but absolute valuation errors of entity multiples compares the deviation on the entity variable. This may be proven by noticing that ̂ ̂ (𝐸𝑉⁄𝑆) 𝐸𝑉 | − 1| = | − 1| 𝐸𝑉 (𝐸𝑉⁄𝑆) (3.2) We can hence understand that to compare the estimated EV/S of a firm with its observed EV/S multiple is the same as to compare the estimated entity value with its observed market value. This distribution may be compared with the EV/EBITDA distribution errors as formula (3.3) suggests: ̂ ̂ (𝐸𝑉⁄𝐸𝐵𝐼𝑇𝐷𝐴) 𝐸𝑉 | − 1| = | − 1| 𝐸𝑉 (𝐸𝑉⁄𝐸𝐵𝐼𝑇𝐷𝐴) (3.3) The same analogy is applicable to the equity multiples. However, we should not compare entity multiples with equity multiples unless we transform entity values into equity values beforehand, deducting the net debt and the preferred stock. This is not done in this study, so an estimation of equity using the P/S multiple differs from an estimation using the EV/S multiple, since the transformation of the entity estimation delivered by the EV/S multiple into equity would lead to two different values, and vice-versa. We should also mention that the valuation error calculation performed, using formula (3.1), is not ubiquitous among studies. That’s another reason why results across different studies are difficult to compare, even when a simple approach as the comparison of central tendency measures of errors is performed. 4 Data The sample we used consists of the constituents of three merged indices, the World Index, the Alternext Allshare and the FTSE AIM All-Share, at the end of the first semester of 2012. To the World Index, containing 6.625 firms from 54 countries1, we added the small and medium size firms from the NYSE Euronext stock exchange encompassing 181 companies, and the 1 Argentina, Australia, Germany, Belgium, Bulgaria, Brazil, Colombia, Hong Kong, China, Chile, Canada, Cyprus, Sri Lanka, Czech Republic, Denmark, Spain, Egypt, Finland, France, Greece, Hungary, Indonesia, India, Ireland, Israel, Italy, Japan, South Korea, Luxembourg, Malta, Mexico, Malaysia, Netherlands, Norway, New Zealand, Austria, Peru, Philippines, Pakistan, Poland, Portugal, Romania, Russian Federation, South Africa, Sweden, Singapore, Slovenia, Switzerland, Taiwan, Thailand, Turkey, United Kingdom, United States and Venezuela. 8 London Stock Exchange, containing 784 companies. The potential size of the sample is then 7.590 companies. The data was obtained from the Thomson Reuters Datastream database, and several variables were constructed by us, adopting an economic balance sheet perspective (Fernández, 2007, p. 14). The variables containing missing values were ignored in the construction of the ratios and we eliminated the severe outliers of all multiples and some ratios. All market multiples were calculated dividing the market capitalization and the entity value by the accounting information, both provided by Datastream. The other variables were constructed using the same source. All the information regarding the stock exchange prices is the one observed at the end of the year and the accounting information is the one reported in the audited annual accounts. The adopted industry classification system is the Industry Classification Benchmark (ICB) because it is the one Datastream uses to categorize companies, that’s not true for other available systems in the database such as the SIC system (Standard Industrial Classification). The reference year for the analysis we perform is 2011. We did not mix information from different moments in time, as some authors do, because they may vary through time as consequence of the market moods influenced by the economic cycle. 14,0 12,0 10,0 8,0 6,0 4,0 2,0 0,0 2000 2001 2002 EV/S 2003 EV/GI 2004 2005 2006 2007 EV/EBITDA 2008 2009 EV/EBIT 2010 2011 EV/TA Figure 4.1: Evolution of the median of the entity multiples during the period 2000-2011 Source: Own elaboration 9 18 16 14 12 10 8 6 4 2 0 2000 2001 2002 2003 P/S P/EBT 2004 P/GI PER 2005 2006 2007 2008 P/EBITDA P/B 2009 2010 2011 P/EBIT P/TA Figure 4.2: Evolution of the median of the equity multiples during the period 2000-2011 Source: Own elaboration As we can clearly see in Figure 4.1 and Figure 4.2, market multiples vary across time. The decrease of all multiples in 2008, when the financial crisis erupted, is evident. Further investigation on this topic may be of academic interest. 5 Empirical Results 5.1 Univariate Analysis We report the descriptive statistics of the 17 studied multiples in Table 5.1 (mean, minimum (Min.), percentile 25 (χ25) or 1st quartile (Q1), median (χ50), percentile 75 (χ75) or 3rd quartile (Q3), maximum (Max), standard deviation (S.D.), coefficient of variation (C.V.), sample size or number of valid observations (n), Skewness value (Skew.) and kurtosis (Kurt.)). Those statistics were obtained for the Training Group, as previously explained. 10 Table 5.1: Descriptive statistics of the market multiples in 2011 Mean Min. χ25 χ50 χ75 Max. S.D. C.V. n Skew. Kurt. Entity market multiples: EV/S 2,0 EV/GI 4,8 EV/EBITDA 8,7 EV/EBIT 12,0 EV/TA 1,5 EV/OCF 11,4 EV/FCFF 15,3 0,0 0,0 0,1 0,1 0,0 0,1 0,0 0,6 2,2 5,2 7,2 0,9 6,4 6,1 1,3 3,8 7,6 10,6 1,2 9,6 11,5 2,6 6,3 10,9 14,9 1,8 14,6 20,4 9,4 17,4 25,5 35,8 4,9 36,0 63,4 2,0 3,7 4,8 6,9 0,9 7,1 13,1 1,0 0,8 0,6 0,6 0,6 0,6 0,9 6.088 5.319 5.700 5.476 6.224 5.795 3.855 1,7 1,3 1,1 1,1 1,5 1,2 1,5 2,4 1,4 1,0 1,2 1,9 1,2 2,0 Equity market multiples: P/S 1,5 P/GI 3,8 P/EBITDA 6,8 P/EBIT 9,3 P/EBT 10,8 P/E 14,9 P/B 1,7 P/TA 1,4 P/OCF 8,9 P/FCFF 12,1 0,0 0,0 0,0 0,0 0,2 0,2 0,0 0,0 0,1 0,0 0,5 1,7 4,0 5,7 6,7 9,2 0,9 0,6 4,9 4,1 1,0 3,0 5,9 8,2 9,5 13,2 1,3 1,0 7,7 9,0 2,1 5,1 8,7 11,8 13,5 18,6 2,2 1,8 11,8 16,9 6,9 14,0 20,6 27,7 32,0 43,6 5,9 5,6 28,7 54,0 1,5 2,8 3,9 5,3 5,9 8,0 1,2 1,2 5,5 10,9 1,0 0,7 0,6 0,6 0,5 0,5 0,7 0,8 0,6 0,9 6.334 5.392 5.847 5.619 5.490 5.475 6.566 6.320 5.984 4.048 1,6 1,2 1,1 1,1 1,1 1,1 1,3 1,5 1,1 1,4 2,0 1,1 1,0 1,1 1,2 1,2 1,4 2,0 1,0 1,9 Source: Own elaboration We can observe in Table 5.1 that the central tendency statistics of multiples of the income statement increase when we move towards the net income, which is naturally a consequence of the subtraction of costs. The dispersion, measured by the coefficient of variation, decreases when we seek a similar pattern across multiples of the income statement. Cash-flow multiples increases dispersion when we go from the top to bottom. The decrease on the number of valid observations is due to the non-validity of negative multiples, which have no economic sense. The exception goes to the Gross Income multiples whose number of observations decreases further than that of the EBITDA multiples, this is because this item does not apply to banks and insurance companies. Another finding of interest is that all multiples are positive biased, that is to say, they have leptokurtic distributions (higher peak than a Normal distribution) indicated by a positive kurtosis, and are right-tailed as the positive skewness values indicate. Next we report the descriptive statistics of the ratios whose relation with multiples we study. We did not exclude most severe outliers from these ratios because we did not want to add another restriction to the relation between multiples and ratios, so these statistics may present discrepant values to the experienced analyst. That won’t be a problem for our subsequent work. Moreover, usually most analysts do not pay attention to these ratios when they value firms with the multiples valuation method. The columns containing the maximum and minimum values in Table 5.2 show how far we relaxed the outliers’ restrictions. Table 5.2: Descriptive statistics of ratios in 2011 11 Mean Min. χ25 χ50 χ75 Max. S.D. n Skew. Kurt. 9,9 6,3 11,8 3,6 -61,6 -45,7 -99,8 -84,5 0,6 -1,2 -14,5 -8,9 8,6 4,9 10,0 3,8 18,9 12,9 34,0 16,2 63,2 44,9 159,0 70,0 17,4 12,8 47,1 22,3 6.471 6.369 5.134 5.201 0,0 0,2 0,4 -0,1 1,6 1,3 0,7 0,8 Income Statement margins (as % of Sales): GI margin 40,1 -71,0 EBITDA margin 19,1 -61,4 EBIT margin 13,4 -53,5 EBT margin 11,0 -45,9 NI margin 7,8 -35,6 22,3 7,8 4,4 3,6 2,4 36,0 15,6 10,5 9,0 6,4 56,7 27,7 20,7 17,8 12,9 100,0 76,4 61,9 53,1 39,7 24,3 18,3 15,4 13,7 10,5 5.874 6.382 6.314 6.315 6.236 0,4 0,4 0,3 0,1 0,0 0,1 1,8 2,0 1,8 2,0 Balance Sheet Structure (items written as % of Sales) FxdAssts_%Sales 62,1 0,0 20,7 NWC_%Sales -3,1 -141,8 -13,7 Invtmts_%Sales 13,3 -3,1 0,1 TA_%Sales 111,0 -422,2 38,2 41,6 1,2 1,9 71,6 83,6 13,6 9,4 138,2 291,7 91,2 247,6 633,9 60,1 31,7 33,0 120,7 6.322 5.971 5.993 6.207 1,6 -1,1 4,2 1,8 2,2 3,1 19,0 4,0 Debt_%Sales Eqty_%Sales PrefStock_%Sales MinInter_%Sales Growth rates (in %): grSales(1y) grSales(CAGR4y) grNI(1y) grNI(CAGR4y) 16,3 80,1 6,6 5,1 -300,0 -261,9 0,0 -5,6 -6,6 33,0 0,0 0,0 6,7 60,1 0,0 0,1 31,0 106,1 0,0 2,0 299,7 349,5 35.976,7 460,3 61,8 70,0 431,8 21,3 6.446 6.231 7.020 6.998 0,8 1,4 82,5 10,3 5,5 2,5 6.862,6 142,8 0,6 8,6 7,8 -93,6 -454,4 -492,0 -0,1 2,0 3,5 0,2 6,9 10,0 0,8 14,5 17,2 89,7 493,2 450,3 3,7 41,7 35,9 7.195 6.949 7.068 -0,9 -0,1 -3,6 249,8 47,1 54,6 Cash-flow Structure (items written as % of Sales) OCF_%Sales 16,0 -196,7 6,4 varNWCch_%Sales -4,2 -199,9 -4,9 CapexCh_%Sales 12,9 -195,8 1,6 varInvtmts_%Sales 5,5 -197,0 -0,3 FCFFCh_%Sales 1,2 -199,0 -5,0 Div_%Sales 5,5 0,0 0,0 Payout_%Sales 35,7 0,0 8,8 13,0 0,1 5,0 0,0 3,7 1,6 27,2 24,7 4,1 14,3 1,0 13,3 4,8 51,0 190,1 200,0 198,5 199,4 199,3 191,4 199,7 23,8 35,1 29,7 33,3 42,4 12,3 35,6 6.863 6.762 6.780 6.659 6.556 6.983 5.780 -1,3 -1,3 1,9 2,1 -0,7 5,6 1,5 16,8 10,9 12,7 14,6 6,2 47,4 2,6 71 92 100 28 7.261 -0,5 -1,0 D/E ROA ROE FreeFloat 66 0 44 Source: Own elaboration 5.2 Multivariate Analysis It became clear above that the distributions of multiples are non-Normal distributions, having skewness and kurtosis values larger than 1. For a distribution to be considered to follow a Normal distribution it must have skewness and kurtosis values within the range ]-0,5;0,5[ (Maroco, 2007, p. 42). As a consequence we cannot perform the significance test for the Pearson’s correlation coefficients, so that we report Spearman’s correlation coefficients in Table 5.3 and Table 5.4. This non-parametric association measure allows for a non-parametric test of significance. We omit some ratios indicated in Table 5.2 because their association with any multiple was insignificant. 12 GI margin 0,55 0,00 0,05 0,00 0,16 0,00 0,11 0,00 0,20 0,00 0,14 0,00 0,10 0,00 0,59 0,00 0,13 0,00 0,19 0,00 0,15 0,00 0,14 0,00 0,11 0,00 0,21 0,00 0,18 0,00 0,21 0,00 0,15 0,00 EBITDA margin 0,66 0,00 0,42 0,00 0,12 0,00 0,06 0,00 0,22 0,00 0,14 0,00 0,21 0,00 0,64 0,00 0,42 0,00 0,06 0,00 -0,01 0,62 0,02 0,26 0,00 0,94 0,24 0,00 0,13 0,00 0,12 0,00 0,20 0,00 EBIT margin 0,63 0,00 0,41 0,00 0,12 0,00 -0,02 0,11 0,29 0,00 0,16 0,00 0,20 0,00 0,65 0,00 0,47 0,00 0,13 0,00 -0,05 0,00 -0,03 0,02 -0,05 0,00 0,30 0,00 0,22 0,00 0,19 0,00 0,22 0,00 EBT margin 0,57 0,00 0,35 0,00 0,06 0,00 -0,10 0,00 0,31 0,00 0,10 0,00 0,20 0,00 0,67 0,00 0,47 0,00 0,17 0,00 -0,02 0,15 -0,06 0,00 -0,06 0,00 0,33 0,00 0,30 0,00 0,23 0,00 0,28 0,00 NI margin 0,57 0,00 0,36 0,00 0,09 0,00 -0,07 0,00 0,34 0,00 0,11 0,00 0,20 0,00 0,68 0,00 0,50 0,00 0,21 0,00 0,04 0,01 0,00 0,88 -0,09 0,00 0,35 0,00 0,33 0,00 0,25 0,00 0,28 0,00 TA _%Sales 0,63 0,00 0,45 0,00 0,25 0,00 0,25 0,00 -0,13 0,00 0,25 0,00 0,08 0,00 0,42 0,00 0,25 0,00 -0,04 0,00 -0,03 0,02 0,05 0,00 0,03 0,03 -0,14 0,00 -0,29 0,00 -0,01 0,35 -0,05 0,01 Eqty _%Sales 0,58 0,00 0,33 0,00 0,14 0,00 0,09 0,00 -0,10 0,00 0,11 0,00 -0,01 0,62 0,61 0,00 0,41 0,00 0,16 0,00 0,09 0,00 0,11 0,00 0,07 0,00 -0,10 0,00 -0,02 0,10 0,17 0,00 0,02 0,17 Table 5.3: Spearman’s correlation coefficients between multiples and ratios (Part 1) EV/S p-value EV/GI p-value EV/EBITDA p-value EV/EBIT p-value EV/TA p-value EV/OCF p-value EV/FCFF p-value P/S p-value P/GI p-value P/EBITDA p-value P/EBIT p-value P/EBT p-value P/E p-value P/B p-value P/TA p-value P/OCF p-value P/FCFF p-value Source: Own elaboration 13 0,05 0,00 -0,02 0,24 -0,26 0,00 -0,44 0,00 0,46 0,00 -0,18 0,00 0,16 0,00 0,26 0,00 0,25 0,00 0,19 0,00 0,03 0,02 -0,13 0,00 -0,20 0,00 0,44 0,00 0,58 0,00 0,21 0,00 0,38 0,00 Roa 0,15 0,00 0,09 0,00 -0,12 0,00 -0,29 0,00 0,48 0,00 -0,05 0,00 0,24 0,00 0,24 0,00 0,22 0,00 0,05 0,00 -0,12 0,00 -0,21 0,00 -0,29 0,00 0,49 0,00 0,42 0,00 0,12 0,00 0,34 0,00 Roe OCF _%Sales 0,63 0,00 0,41 0,00 0,15 0,00 0,09 0,00 0,17 0,00 0,09 0,00 0,08 0,00 0,63 0,00 0,44 0,00 0,13 0,00 0,07 0,00 0,06 0,00 0,01 0,37 0,20 0,00 0,12 0,00 0,05 0,00 0,10 0,00 Capex _%Sales 0,35 0,00 0,33 0,00 0,09 0,00 0,15 0,00 0,20 0,00 0,10 0,00 0,38 0,00 0,32 0,00 0,25 0,00 0,01 0,54 0,09 0,00 0,10 0,00 0,10 0,00 0,21 0,00 0,10 0,00 0,06 0,00 0,36 0,00 varNWC_ varInvtmts %Sales _%Sales -0,05 0,11 0,00 0,00 0,00 0,12 0,76 0,00 -0,02 0,03 0,19 0,01 -0,01 -0,04 0,42 0,00 0,03 0,04 0,04 0,01 0,03 0,04 0,02 0,00 0,30 0,10 0,00 0,00 -0,04 0,11 0,00 0,00 0,00 0,11 0,77 0,00 0,02 -0,02 0,19 0,14 0,03 -0,11 0,02 0,00 0,01 -0,09 0,61 0,00 -0,02 -0,11 0,20 0,00 0,02 0,04 0,12 0,00 0,04 0,00 0,00 0,81 0,05 0,01 0,00 0,56 0,32 0,08 0,00 0,00 FCFF _%Sales 0,09 0,00 -0,03 0,01 -0,06 0,00 -0,08 0,00 0,04 0,00 -0,17 0,00 -0,41 0,00 0,11 0,00 0,02 0,13 0,05 0,00 0,03 0,05 0,02 0,23 0,03 0,04 0,04 0,00 0,09 0,00 -0,09 0,00 -0,46 0,00 Divid _%Sales 0,35 0,00 0,28 0,00 0,17 0,00 0,06 0,00 0,14 0,00 0,19 0,00 0,15 0,00 0,44 0,00 0,33 0,00 0,21 0,00 0,11 0,00 0,09 0,00 0,04 0,01 0,16 0,00 0,12 0,00 0,25 0,00 0,21 0,00 0,03 0,01 0,07 0,00 0,14 0,00 0,16 0,00 0,04 0,00 0,11 0,00 0,10 0,00 0,07 0,00 0,06 0,00 0,14 0,00 0,18 0,00 0,19 0,00 0,23 0,00 0,07 0,00 0,02 0,12 0,11 0,00 0,12 0,00 Payout 0,04 0,00 -0,02 0,12 -0,23 0,00 -0,43 0,00 0,55 0,00 -0,17 0,00 0,07 0,00 0,25 0,00 0,25 0,00 0,21 0,00 0,05 0,00 -0,13 0,00 -0,20 0,00 0,51 0,00 0,72 0,00 0,21 0,00 0,30 0,00 ln(Roa) 0,18 0,00 0,12 0,00 -0,08 0,00 -0,28 0,00 0,56 0,00 -0,01 0,58 0,17 0,00 0,23 0,00 0,21 0,00 0,05 0,00 -0,12 0,00 -0,21 0,00 -0,29 0,00 0,59 0,00 0,48 0,00 0,12 0,00 0,24 0,00 ln(Roe) ln(OCF _Sales) 0,72 0,00 0,45 0,00 0,16 0,00 0,09 0,00 0,16 0,00 0,08 0,00 0,06 0,00 0,72 0,00 0,48 0,00 0,13 0,00 0,06 0,00 0,06 0,00 0,00 0,89 0,18 0,00 0,11 0,00 0,05 0,00 0,05 0,01 ln(Capex _%Sales) 0,45 0,00 0,40 0,00 0,14 0,00 0,19 0,00 0,14 0,00 0,16 0,00 0,31 0,00 0,38 0,00 0,30 0,00 0,02 0,08 0,09 0,00 0,11 0,00 0,09 0,00 0,15 0,00 0,03 0,03 0,07 0,00 0,24 0,00 ln(varNWC _%Sales) 0,36 0,00 0,26 0,00 0,11 0,00 0,04 0,04 -0,08 0,00 0,14 0,00 0,06 0,02 0,28 0,00 0,22 0,00 0,03 0,11 -0,06 0,00 -0,02 0,35 -0,10 0,00 -0,08 0,00 -0,11 0,00 0,07 0,00 -0,01 0,73 Table 5.4: Spearman’s correlation coefficients between multiples and ratios (Part 2) EV/S p-value EV/GI p-value EV/EBITDA p-value EV/EBIT p-value EV/TA p-value EV/OCF p-value EV/FCFF p-value P/S p-value P/GI p-value P/EBITDA p-value P/EBIT p-value P/EBT p-value P/E p-value P/B p-value P/TA p-value P/OCF p-value P/FCFF p-value Source: Own elaboration 14 ln(varInvtm ts_%Sales) 0,36 0,00 0,31 0,00 0,16 0,00 0,03 0,09 -0,17 0,00 0,14 0,00 -0,12 0,00 0,28 0,00 0,23 0,00 0,01 0,77 -0,13 0,00 -0,07 0,00 -0,12 0,00 -0,17 0,00 -0,20 0,00 0,03 0,19 -0,22 0,00 ln(FCFF_ %Sales) 0,51 0,00 0,32 0,00 0,18 0,00 0,07 0,00 0,01 0,75 0,08 0,00 -0,42 0,00 0,44 0,00 0,30 0,00 0,12 0,00 0,02 0,24 0,06 0,00 0,02 0,18 0,01 0,73 -0,04 0,03 0,04 0,02 -0,46 0,00 ln(Divid_ %Sales) 0,64 0,00 0,46 0,00 0,28 0,00 0,14 0,00 0,18 0,00 0,31 0,00 0,14 0,00 0,72 0,00 0,54 0,00 0,31 0,00 0,18 0,00 0,16 0,00 0,06 0,00 0,21 0,00 0,16 0,00 0,37 0,00 0,17 0,00 ln(Payout) 0,09 0,00 0,11 0,00 0,23 0,00 0,28 0,00 0,05 0,00 0,17 0,00 0,08 0,00 0,11 0,00 0,09 0,00 0,21 0,00 0,28 0,00 0,32 0,00 0,34 0,00 0,08 0,00 0,01 0,37 0,15 0,00 0,07 0,00 grSales (CAGR4y) 0,18 0,00 0,25 0,00 0,08 0,00 -0,01 0,37 0,29 0,00 0,10 0,00 0,23 0,00 0,20 0,00 0,26 0,00 0,10 0,00 0,02 0,11 0,01 0,62 0,00 0,79 0,31 0,00 0,23 0,00 0,13 0,00 0,26 0,00 grNI (CAGR4y) 0,18 0,00 0,13 0,00 -0,03 0,04 -0,21 0,00 0,32 0,00 0,04 0,00 0,15 0,00 0,21 0,00 0,20 0,00 0,06 0,00 -0,08 0,00 -0,15 0,00 -0,19 0,00 0,34 0,00 0,29 0,00 0,12 0,00 0,21 0,00 In Table 5.3 and Table 5.4 we also report the p-values corresponding to the test: H0: s = 0 vs. H1: s ≠ 0. The strongest correlation values are highlighted in bold and will be held in consideration for the next step. Based on the strength of the Spearman’s rank correlation coefficients we gathered together ratios that seemed to form natural sets due to their position in the income statement, the cash-flow statement or the balance sheet. This criterion may look somewhat arbitrary but it is strongly supported by the high correlation between all these ratios to one or more multiples. We summarize these natural sets of ratios in Table 5.5 and add the Industry criterion for future purposes. Table 5.5: Sets of selected ratios 00 Industry 09 EBITDA TA RoE OCF Capex FCFF Divid 01 GI Ebitda Ebit Ebt NI 10 Ebitda TA OCF Capex 02 Ebitda Ebit Ebt NI 11 ln(RoA) ln(RoE) 03 TA Eqty 12 ln(OCF) ln(Capex) ln(varNWC) ln(varInvtmts) 04 RoA RoE 13 ln(FCFF) 05 OCF Capex varNWC varInvtmts 14 ln(Diviv) 06 OCF Capex 15 ln(FCFF) ln(Divid) 07 FCFF 16 ln(Payout) 08 Divid 17 grSales(CAGR) grNI(CAGR) ln(RoE) Source: Own elaboration These sets of selected ratios do not have all the same importance for every multiple as the Spearman’s correlation coefficients show. We brief in Table 5.6 the relationships between multiples and sets of ratios that will be carried further. Table 5.6: Summary of held relationships between multiples and sets of ratios 00 01 02 03 EV/S √ √ √ √ √ EV/GI √ √ √ √ EV/EBITDA √ EV/EBIT √ EV/TA √ EV/OCF √ EV/FCFF √ P/S √ P/GI √ P/EBITDA √ P/EBIT √ P/EBT √ √ √ P/E √ √ √ P/B √ P/TA √ P/OCF √ P/FCFF √ N 17 √ 04 05 06 07 08 09 √ 10 12 13 14 15 √ 11 √ √ √ √ √ √ √ √ √ 16 17 √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 4 √ 8 5 √ √ √ 12 2 √ 4 2 Source: Own elaboration 15 √ 3 4 2 3 4 4 7 4 2 2 In the last line of Table 5.6 we may observe that the set of ratios 04 (RoA and RoE) is the one that is more correlated to more multiples, retaining 12 ties. The second most “popular set of ratios” among multiples is the set 02 (Ebitda margin, Ebit margin, Ebt margin and NI margin) holding 8 ties, followed by the set 14 (logarithmic dividends) retaining 7 links. The multiple P/EBIT does not hold any connection to any set of ratios due to its weak Spearman’s coefficients with all ratios. 5.3 Cluster Analysis Using the seventeen sets of ratios defined above we performed hierarchical and non-hierarchical cluster analysis on the Training Group of the sample. The defined sets of ratios constitute, as seen above, several attempts to identify the variables that better serve the purpose of dividing the firms into different groups to perform valuations using multiples. It is here that we determine the number of clusters for each set of ratios, or set of characteristics. Hierarchical Cluster Analysis: To perform the hierarchical cluster analysis we selected the Euclidean Distance to construct the dissimilarity matrix and the Complete Linkage (or FurthestNeighbour) method as clustering method. The use of the Euclidean Distance is related to its popularity and simplicity. The use of the Complete Linkage method aims at avoiding chain effects and favouring the appearance of compact clusters (Maroco, 2007, p. 428). We standardized all variables, using Z scores, to eliminate the effect of different dispersions among variables on the Euclidean distance. The simple visual analysis of the dendrograms does not allow us to determine the number of clusters due to the size of the Training Group (5.307 firms). So we analyse instead the coefficients of the Agglomeration Schedule and the R2 calculated as follows (Maroco, 2007, p. 439): 2 ∑𝑝𝑖=1 ∑𝑘𝑗=1 𝑛𝑖𝑗 (𝑋̅𝑖𝑗 − 𝑋̅𝑖 ) 𝑆𝑄𝐶 2 𝑅 = = 𝑆𝑄𝑇 ∑𝑝 ∑𝑘 ∑𝑛𝑖 (𝑋 − 𝑋̅)2 𝑖=1 𝑗=1 𝑙=1 𝑖𝑗𝑙 (5.1) where SQC is the Sum of Squares Between Groups and SQT is the Total Sum of Squares. Figure 5.1 shows the behaviour of the coefficients, measuring the distance between clusters, and the R2 as we increase the number of clusters. This example (Figure 5.1) was made using the set of ratios 01 (GI margin, Ebitda margin, Ebit margin, Ebt margin and NI margin). 16 250 1,0 200 0,8 150 0,6 100 0,4 50 0,2 0 0,0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Coefficients R-squared Figure 5.1: Visual representation of the coefficients and the R2 for the set of ratios 01 Source: Own elaboration The main criterion to determine the number of clusters of each set of ratios was to achieve a R2 of at least 80%. Then, by the analysis of the slope of the coefficients, we intended to include that number of clusters that capture a substantial sink of that distance. A third criterion was implemented based on the relative increment of the R2 – that is, if after the 1st and the 2nd criterion, there is another partition that increases the R2 considerably it should be included. The analysis was performed for a maximum of 50 clusters for each set of ratios. The “optimal” number of clusters for each set of ratios may be read on Table 5.7. All except the set of ratios 09 exceed 80% of the R2. When a partition of 50 clusters is considered the set of ratios 09 only reaches a value of 72%. Non-hierarchical Cluster Analysis: Based on the partitions determined in the hierarchical cluster analysis we performed a K-Means Cluster Analysis. This method consists in the following: 1st) divide the elements in k clusters according to the researcher’s choice; 2nd) compute/update the centre of each cluster; 3rd) assign each element to the cluster whose cluster centre is closest; 4th) repeat all the process from the 2nd step until the minimum distance of all elements to the respective cluster centre doesn’t change significantly (Maroco, 2007, p. 446). This method allows an element to end up in a cluster different from the cluster it was assigned at first. That does not occur in the hierarchical cluster analysis. The R2 measures obtained for each set of ratios running the hierarchical clustering and K-Means Cluster Analysis may be found at Table 5.7. 17 Table 5.7: Number of held clusters by set of ratios and their corresponding R2 Set of Ratios 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 Number of Clusters Classificatory Variables GI; Ebitda; Ebit; Ebt; NI (all as % of Sales) Ebitda; Ebit; Ebt; NI (all as % of Sales) TA (%Sales); Eqty (%Sales) RoA; RoE OCF; Capex; varNWC; varInvtmts (all as % of Sales) OCF; Capex (all as % of Sales) FCFF (as % of Sales) Divid (as % of Sales) EBITDA; TA; RoE; OCF; Capex; FCFF; Divid (as % of Sales) Ebitda TA OCF Capex (all as % of Sales) ln(RoA) ln(RoE) ln(OCF) ln(Capex) ln(varNWC) ln(varInvtmts) ln(FCFF) ln(Diviv) ln(FCFF) ln(Divid) ln(Payout) grSales(CAGR) grNI(CAGR) ln(RoE) 20 8 10 19 43 19 5 8 30 43 8 39 7 9 16 6 24 R2 (Hierarchical Analysis) R2 (K-Means) 0,81 0,80 0,82 0,83 0,80 0,81 0,85 0,94 0,65 0,80 0,82 0,80 0,92 0,91 0,81 0,83 0,80 0,87 0,84 0,88 0,92 0,86 0,90 0,89 0,96 0,75 0,87 0,87 0,83 0,95 0,95 0,89 0,90 0,89 Source: Own elaboration 5.4 Conception and Analysis of the Prediction Errors Implementation of the method of multiples: After the cluster analysis that divided our Training Group into clusters according to the financial characteristics or sets of ratios, a broad implementation of the method of multiples was carried out following the typical next steps: 1st) computation of the mean, median, harmonic mean and geometric mean for all clusters obtained in the cluster analysis as well as for all 4 ICB levels; 2nd) matching of each company of the Test Group to its corresponding cluster of the Training Group using the Nearest Neighbour Analysis built upon the consistent sets of ratios; 3rd) each Test Group company received the valuation given by the mean, the median, the harmonic mean and the geometric mean of all relevant multiples of its peers, defined by its corresponding cluster and its industry classification; 4th) calculation of the estimation errors using formula 3.1. Prediction errors analysis: The analysis of the error distributions, obtained implementing the method of multiples through its several alternatives, is performed running paired t-student tests. We may consider this parametric test as the size of the Test Group is far above 100 observations to tested multiples. Thus, the hypotheses under analysis are as follows (Maroco, 2007, p. 271): 𝐻0 : 𝜇1 = 𝜇2 (6.2) 𝐻1 : 𝜇1 ≠ 𝜇2 where, μ represents the mean of populations 1 and 2 under comparison. 18 The t statistic is as follows: 𝑇= ̅ 𝐷 𝑆𝐷′ ⁄ √𝑛 (6.3) ̅ is the observed mean of Di = (X1i − X2i ), i=1,…, n, SD′ is the corrected standard where, D deviation of variable Di and n represents the number of observations of variable Di . Due to the fact that we perform non-independent multiple comparisons of means, a Bonferroni correction must be applied, so that the significance level shall be transformed into α′ = α/m, where m represents the number of formal tests to perform (Dunn, 1961). In order to compare such a great number of distributions we’ve encoded them according to the keys in Table 5.8. For instance, a distribution coded as “03.3B” means that to predict the companies’ value, we used the ICB system (1st cf. Table 5.8) considering as comparable companies the ones belonging to the same Sector (2nd key cf. Table 5.8) and employed the EV/EBITDA multiple (3rd key cf. Table 5.8) aggregating it applying the median (4th key cf. Table 5.8) to the observed peer values. Alternatively, if a distribution is coded as “45:3B” it means that to predict the companies’ value, we used the same EV/EBITDA multiple (3rd key cf. Table 5.8) aggregating it using the median (4th key cf. Table 5.8) but recurring to a different set of comparable companies: firms gathered using the set of rations 04 (1st cf. Table 5.8), i.e. the Return on Assets (RoA) and the Return on Equity (RoE), running the Complete Linkage procedure (2nd key cf. Table 5.8) for clustering peers. Table 5.8: Reading diagram for the encoded distribution errors First Code – Cluster Approach 0: ICB 1: Set of ratios 01 2: Set of ratios 02 3: Set of ratios 03 4: Set of ratios 04 5: Set of ratios 05 6: Set of ratios 06 7: Set of ratios 07 8: Set of ratios 08 9: Set of ratios 09 '0: Set of ratios 10 '1: Set of ratios 11 '2: Set of ratios 12 '3: Set of ratios 13 '4: Set of ratios 14 '5: Set of ratios 15 '6: Set of ratios 16 '7: Set of ratios 17 Second Code - Classification 1: Industry 2: Supersector 3: Sector 4: Subsector 5: Complete Linkage 6: K-Means Source: Own elaboration 19 Third Code – Multiple 1: EV/S 2: EV/GI 3: EV/EBITDA 4: EV/EBIT 5: EV/TA 6: EV/OCF 7: EV/FCFF 8: P/S 9: P/GI '0: P/EBITDA '1: P/EBIT '2: P/EBT '3: P/E '4: P/B '5: P/TA '6: P/OCF '7: P/FCFF Fourth Code – Selected Measure A: Mean B: Median C: Harmonic Mean D: Geometric Mean 5.5 Measure of Central Tendency In this section we examine the question of which measure of central tendency (4th key cf. Table 5.8) provides the lowest prediction errors. We performed formal tests, for the four considered measures of central tendency - mean (A), median (B), harmonic mean (C) and geometric mean (D) - using several market multiples under different clustering procedures. In Table 5.9, we may see two examples of how the tests were performed. The upper portion of the table presents the paired t-statistics, the second presents the bilateral p-values for the tests in formula (6.2), followed by the ascertained ranking of best measures and by three statistics of the distribution errors indicated in the first line of the table. EV/TA: Sector t-Student Test 03.5A 03.5B 03.5C 03.5A 17,514 13,261 03.5B 7,878 03.5C 03.5A 0,000 0,000 03.5B 0,000 03.5C Ranking 4th 2nd 1st Mean 0,6699 0,5454 0,4825 Stand.-Dev. 1,7264 1,4858 1,2212 N 1.874 1.874 1.874 Descript. Stat p-value* t-Stat. EV/EBITDA: Industry t-Student Test 01.3A 01.3B 01.3C 01.3D 01.3A 11,629 6,256 9,517 01.3B 4,713 5,836 01.3C - -4,291 01.3A 0,000 0,000 0,000 01.3B 0,000 0,000 01.3C - 0,000 Ranking 4th 3rd 1st 2nd Mean 0,7487 0,6685 0,5391 0,6306 Stand.-Dev. 2,7304 2,4759 1,4956 2,2601 N 1.712 1.712 1.712 1.712 Descript. Stat p-value* t-Stat. Table 5.9: Formal tests for the prediction errors associated with the use of different measures 03.5D 16,867 -4,194 -9,502 0,000 0,000 0,000 3rd 0,5543 1,4765 1.874 As we can notice in both cases the harmonic mean is the best measure of central tendency for the multiple EV/EBITDA when the ICB Industry level is considered as well as for the EV/TA multiple when an ICB Sector level is used. Table 5.10 and Table 5.11 summarize the results for the best measure for all analysed multiples and clustering procedures. Table 5.10: The best measure of central tendency (indicated by Distrib.) for each market multiple and each ICB level characterized by the mean and the median of its distribution errors Distrib. EV/S EV/GI EV/EBITDA EV/EBIT EV/TA EV/OCF EV/FCFF P/S P/GI P/EBITDA P/EBIT P/EBT P/E P/B P/TA P/OCF P/FCFF #01.1C #01.2C #01.3C #01.4C #01.5C #01.6C 01.7C #01.8C #01.9C #01.'0C #01.'1C #01.'2C #01.'3C #01.'4C #01.'5C #01.'6C #01.'7C Industry Supersector Sector Mean Median Distrib. Mean Median Distrib. Mean Median 0,812 0,660 0,539 0,575 0,479 0,596 1,092 0,847 0,753 0,529 0,486 0,445 0,442 0,553 0,734 0,583 1,179 0,639 0,517 0,394 0,425 0,315 0,420 0,702 0,661 0,502 0,409 0,380 0,361 0,367 0,437 0,613 0,454 0,767 #02.1C #02.2C #02.3C #02.4C #02.5C #02.6C 02.7C #02.8C #02.9C #02.'0C #02.'1C #02.'2C #02.'3C #02.'4C #02.'5C #02.'6C #02.'7C 0,810 0,655 0,542 0,580 0,485 0,575 1,170 0,838 0,647 0,518 0,483 0,445 0,440 0,551 0,715 0,566 1,180 0,623 0,514 0,382 0,412 0,324 0,408 0,660 0,647 0,515 0,398 0,375 0,360 0,365 0,421 0,564 0,417 0,742 Source: Own elaboration 20 #03.1C #03.2C #03.3C #03.4C #03.5C #03.6C 03.7C #03.8C #03.9C #03.'0C #03.'1C #03.'2C #03.'3C #03.'4C #03.'5C #03.'6C #03.'7C 0,806 0,675 0,542 0,584 0,482 0,566 1,258 0,795 0,632 0,523 0,486 0,444 0,445 0,553 0,719 0,565 1,207 0,608 0,505 0,380 0,418 0,317 0,394 0,648 0,614 0,500 0,387 0,368 0,360 0,360 0,431 0,549 0,401 0,723 Distrib. #04.1C #04.2C #04.3C #04.4C #04.5C 04.6C #04.7C #04.8C #04.9C #04.'0C #04.'1C #04.'2C #04.'3C #04.'4C #04.'5C #04.'6C #04.'7C Subsector Mean Median 0,838 0,688 0,544 0,590 0,488 0,565 1,173 0,780 0,630 0,508 0,474 0,437 0,440 0,543 0,703 0,551 1,292 0,583 0,470 0,368 0,402 0,315 0,389 0,624 0,582 0,482 0,373 0,362 0,345 0,350 0,431 0,532 0,390 0,709 Table 5.11: The best measure of central tendency (indicated by Distrib.) for each market multiple and each clustering process characterized by the mean and the median of its distribution errors Complete Linkage K Means Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median Distrib. Mean Median Distrib. Mean Median EV/S EV/GI EV/EBITDA EV/EBIT EV/TA EV/OCF EV/FCFF P/S P/GI P/EBITDA P/EBT P/E P/B P/TA P/OCF P/FCFF #15.1C #35.1C #85.1C #'25.1C #'45.1C #25.2C #65.2C #'25.2C #'45.2C #35.3C #45.4C #25.5C #'15.5C #'45.6C #25.7C #55.7C #95.7C #15.8C #35.8C #65.8C #95.8C #'35.8C #'55.8C #25.9C #45.9C #85.9C #'25.9C #'45.9C #'45.'0C #45.'2C #45.'3C #15.'4C #45.'4C #'75.'4C #45.'5C #15.'6C #'45.'6C #25.'7C #55.'7C #95.'7C 0,574 0,700 0,796 0,530 0,660 0,599 0,601 0,582 0,599 0,485 0,519 0,507 0,398 0,559 0,920 0,787 0,846 0,553 0,742 0,671 0,747 0,762 0,566 0,553 0,648 0,633 0,572 0,546 0,465 0,444 0,448 0,524 0,551 0,448 0,756 0,511 0,495 0,935 0,894 0,767 0,427 #16.1C 0,502 #36.1C 0,640 #86.1C 0,431 #'26.1C 0,489 #'46.1C 0,467 #26.2C 0,466 #66.2C 0,419 #'26.2C 0,466 #'46.2C 0,364 #36.3C 0,379 #46.4C 0,330 #26.5C 0,288 #'16.5C 0,402 #'46.6C 0,641 #26.7C 0,596 #56.7C 0,605 #96.7C 0,439 #16.8C 0,569 #36.8C 0,526 #66.8C 0,536 #96.8C 0,615 #'36.8C 0,460 #'56.8C 0,442 #26.9C 0,526 #46.9C 0,507 #86.9C 0,480 #'26.9C 0,423 #'46.9C 0,349 #'46.'0C 0,354 #46.'2C 0,370 #46.'3C 0,411 #16.'4C 0,451 #46.'4C 0,372 #'76.'4C 0,627 #46.'5C 0,408 #16.'6C 0,392 #'46.'6C 0,705 #26.'7C 0,603 #56.'7C 0,581 #96.'7C 0,556 0,659 0,736 0,528 0,652 0,590 0,590 0,577 0,585 0,476 0,507 0,506 0,401 0,572 0,930 0,763 0,722 0,527 0,679 0,690 0,637 0,757 0,528 0,547 0,621 0,601 0,574 0,532 0,454 0,445 0,444 0,527 0,507 0,464 0,714 0,507 0,490 1,001 0,776 0,769 0,408 0,483 0,558 0,385 0,492 0,449 0,475 0,404 0,456 0,361 0,376 0,335 0,279 0,403 0,630 0,574 0,579 0,416 0,528 0,515 0,477 0,611 0,426 0,428 0,506 0,474 0,453 0,406 0,350 0,370 0,369 0,410 0,400 0,386 0,600 0,400 0,392 0,694 0,576 0,557 #25.1C #65.1C #'05.1C #'35.1C #'55.1C #35.2C #'05.2C #'35.2C #'55.2C #45.3C 0,636 0,658 0,599 0,743 0,669 0,628 0,573 0,661 0,586 0,496 0,484 0,500 0,447 0,608 0,564 0,471 0,452 0,530 0,478 0,364 #26.1C #66.1C #'06.1C #'36.1C #'56.1C #36.2C #'06.2C #'36.2C #'56.2C #46.3C 0,631 0,653 0,528 0,754 0,656 0,616 0,554 0,655 0,584 0,496 0,467 0,486 0,383 0,593 0,483 0,467 0,418 0,517 0,477 0,370 #45.5C #'75.5C 0,462 0,455 0,318 0,302 #46.5C #'76.5C 0,424 0,452 0,294 0,293 #45.7C #75.7C 0,925 0,757 0,664 0,612 #46.7C #76.7C 0,958 0,757 0,647 0,604 #25.8C #45.8C #85.8C #'25.8C #'45.8C 0,596 0,849 0,809 0,613 0,562 0,470 0,648 0,628 0,512 0,443 #26.8C #46.8C #86.8C #'26.8C #'46.8C 0,587 0,825 0,722 0,615 0,537 0,452 0,635 0,562 0,522 0,431 #35.9C #65.9C #95.9C #'35.9C #'55.9C 0,628 0,587 0,612 0,624 0,520 0,490 0,470 0,486 0,498 0,422 #36.9C #66.9C #96.9C #'36.9C #'56.9C 0,606 0,588 0,570 0,621 0,520 0,488 0,454 0,452 0,498 0,424 #'65.'2C #'65.'3C #25.'4C #'15.'4C 0,420 0,412 0,555 0,446 0,331 #'66.'2C 0,318 #'66.'3C 0,440 #26.'4C 0,367 #'16.'4C 0,412 0,405 0,558 0,440 0,322 0,320 0,445 0,358 #'15.'5C #45.'6C 0,530 0,576 0,427 #'16.'5C 0,436 #46.'6C 0,576 0,565 0,458 0,438 #45.'7C #75.'7C 0,873 0,773 0,764 0,622 0,920 0,775 0,784 0,624 #46.'7C #76.'7C Source: Own elaboration All our results show that the harmonic mean (marked with # before the cypher to denote the rejection of the null hypothesis) is the measure that minimizes the prediction errors of valuations using multiples. Only in four cases (EV/OCF Subsector, EV/FCFF Industry/ Supersector and Sector), and just when the Bonferroni correction is considered, we may not reject the hypothesis that the harmonic mean and the median produce similar results. 21 For all multiples, except for the EV/TA and the P/B, we may rank the measures as follows: 1st) harmonic mean, 2nd) geometric mean, 3rd) median, 4th) mean. For the multiples EV/TA and P/B the rank generally changes to: 1st) harmonic mean, 2nd) median, 3rd) geometric mean, 4th) mean. One may check in the appendix (Table A.1) an informal ranking to confirm this general rule. Despite having performed all the formal tests, they are not shown in this document due to the high amount of pages it would require. When variables are written in italic it indicates that the null hypothesis may not be rejected. 5.6 Identifying the Best Clustering Method Here we study which clustering procedure minimizes the estimation errors. The analysed clustering procedures are: the four ICB levels – Industry (1); Supersector (2); Sector (3) and Subsector (4), the hierarchical clustering with complete linkage (5) and the non-hierarchical kmeans (6). In our cypher system (see Table 5.8), these different proposals may be read in the second key. Table 5.12 and Table 5.13 summarize our conclusions regarding the best clustering procedure, if any, to conduct a valuation using multiples. We marked the distributions with an asterisk symbol (*) when the null hypothesis cannot be rejected, i.e., when there is no significant difference between the clustering procedure, and we marked them with a hash symbol (#) when the used clustering method minimizes the estimation errors. Table 5.12: The best ICB level characterized by the mean and the median of its distribution errors Distrib. *03.1C *04.1C *03.5C *04.5C ICB #03.9C #04.9C *03.'3C *04.'3C *03.'7C *04.'7C Mean Median Distrib. Mean Median EV/S EV/GI 0,806 0,608 *03.2C 0,675 0,505 0,838 0,583 *04.2C 0,688 0,470 EV/TA EV/OCF 0,482 0,317 *03.6C 0,566 0,394 0,488 0,315 *04.6C 0,565 0,389 P/GI P/EBITDA 0,632 0,500 *04.'0C 0,508 0,373 0,630 0,482 *03.'0C 0,523 0,387 P/E P/B 0,445 0,360 *03.'4C 0,553 0,431 0,440 0,350 *04.'4C 0,543 0,431 P/FCFF 1,207 0,723 1,292 0,709 Distrib. Mean Median EV/EBITDA *03.3C 0,542 0,380 *04.3C 0,544 0,368 EV/FCFF *03.7C 1,258 0,648 *04.7C 1,173 0,624 P/EBIT *03.'1C 0,486 0,368 *04.'1C 0,474 0,362 P/TA *03.'5C 0,719 0,549 *04.'5C 0,703 0,532 Distrib. *03.4C *04.4C #03.8C #04.8C *03.'2C *04.'2C *03.'6C *04.'6C Mean Median EV/EBIT 0,584 0,418 0,590 0,402 P/S 0,795 0,614 0,780 0,582 P/EBT 0,444 0,360 0,437 0,345 P/OCF 0,565 0,401 0,551 0,390 Source: Own elaboration The results shown in Table 5.12 are somewhat surprising because they reveal that there is no significant difference on what ICB level to use when a valuation using multiples is conducted. This conclusion conflicts with the results presented by Alford (1992, p. 106) and Schreiner 22 (2007a, p. 110). However, while Alford’s results are based in another classification system, the SIC system, Schreiner’s ones are not supported by formal tests. This conclusion may reinforce Schreiner’s idea that the use of a proprietary system should be encouraged because they are regularly reviewed and adjusted (Schreiner, 2007a, p. 19&70) or may indicate that the number of selected comparable firms also influences this issue, because we did not limit the number of peers, or still that the broader sample that we considered can play an important role. Further investigations on this subject should be carried out. In fact just for the P/S and the P/GI multiples the results show that the first ICB level (i.e. Industry) should be substituted by a narrow ICB level, for all other multiples it is irrelevant to use a broader definition as the 1st ICB level or a narrow classification level. 23 Table 5.13: The best clustering procedure characterized by the mean and the median of its distribution errors Distrib. Set of ratios 01 Set of ratios 02 Set of ratios 04 Set of ratios 05 Set of ratios 06 Set of ratios 07 Set of ratios 08 Set of ratios 09 Set of ratios 10 Set of ratios 11 Set of ratios 12 Set of ratios 13 Set of ratios 14 Set of ratios 15 Set of ratios 16 Set of ratios 17 Mean Median EV/S *16.1C 0,556 0,408 EV/S *26.1C 0,6307 0,4665 P/S *26.8C 0,587 0,452 EV/EBITDA *46.3C 0,4961 0,370 P/S #46.8C 0,825 0,635 P/B #46.'4C 0,507 0,400 EV/FCFF *56.7C 0,763 0,574 EV/S *66.1C 0,653 0,486 EV/FCFF *76.7C 0,757 0,604 EV/S #86.1C 0,736 0,558 EV/FCFF *96.7C 0,722 0,579 EV/S #'06.1C 0,528 0,383 EV/TA *'16.5C 0,401 0,279 EV/S *'26.1C 0,528 0,385 EV/S *'36.1C 0,754 0,593 EV/S *'46.1C 0,652 0,492 P/GI *'46.9C 0,532 0,406 EV/S *'56.1C 0,656 0,483 P/EBT #'66.'2C 0,412 0,322 EV/TA *'76.5C 0,452 0,293 Distrib. Mean Median P/S #16.8C 0,527 0,416 EV/GI *26.2C 0,590 0,449 P/GI *26.9C 0,547 0,428 EV/EBIT *46.4C 0,507 0,376 P/GI #46.9C 0,621 0,506 P/TA #46.'5C 0,714 0,600 P/FCFF *56.'7C 0,776 0,576 EV/GI *66.2C 0,590 0,475 P/FCFF *76.'7C 0,775 0,624 P/S #86.8C 0,722 0,562 P/S #96.8C 0,637 0,477 EV/GI *'06.2C 0,554 0,418 P/B *'16.'4C 0,440 0,358 EV/GI *'26.2C 0,577 0,404 EV/GI *'36.2C 0,655 0,517 EV/GI *'46.2C 0,585 0,456 P/EBITDA #'46.'0C 0,454 0,350 EV/GI *'56.2C 0,584 0,477 P/E #'66.'3C 0,405 0,320 P/B #'75.'4C 0,448 0,372 Distrib. *16.'4C *26.5C *26.'4C #46.5C *46.'2C *46.'6C *66.8C #86.9C #96.9C #'15.'5C *'26.8C *'36.8C *'46.6C *'46.'6C #''56.8C Mean Median Distrib. Mean Median P/B P/OCF 0,527 0,410 *16.'6C 0,507 0,400 EV/TA EV/FCFF 0,506 0,335 *26.7C 0,930 0,630 P/B P/FCFF 0,558 0,445 *26.'7C 1,001 0,694 EV/TA EV/FCFF 0,424 0,294 *46.7C 0,958 0,647 P/EBT P/E 0,445 0,370 *46.'3C 0,444 0,369 P/OCF P/FCFF 0,565 0,438 *46.'7C 0,920 0,784 P/S 0,690 P/GI 0,601 P/GI 0,570 P/TA 0,530 P/S 0,615 P/S 0,757 EV/OCF 0,572 P/OCF 0,490 P/S 0,528 0,515 *66.9C P/GI 0,588 0,454 P/FCFF 0,769 0,557 0,474 0,452 *96.'7C 0,427 0,522 *'26.9C 0,611 *'36.9C 0,403 #'46.8C P/GI 0,574 P/GI 0,621 P/S 0,537 0,453 0,498 0,431 0,392 0,426 *'56.9C P/GI 0,520 0,424 Source: Own elaboration Concerning the better clustering approach when a valuation is done upon a set of ratios, the results show that, for most multiples, it is identical to use a hierarchical (5) or a k-means clustering approach (6). In only 19 cases among 67 we concluded that the clustering method has an impact on the estimation errors. When it was concluded for the preference of a clustering procedure in almost all cases (17 cases), it is better to use the k-means approach. Further considerations regarding these results and the establishment of regularities, are not likely to be done. 24 In order to continue our study in the next sections, we will select the k-means approach when a clustering approach may not be relegated, using sets of ratios. For the ICB approach we will choose the 3-digit level, following Schreiner’s suggestion (2007a, p. 128), except for the P/EBITDA multiple, for which we have chosen the 4-digit level due to an ad-hoc consideration. 5.7 The Best Performing Multiples In this section we discuss which multiples are better suited to perform a valuation, having in consideration the investigated clustering approaches. In Table 5.14 and Table 5.15 we summarize the findings from our formal tests. Table 5.14: The best market multiples characterized by the mean and the median of its distribution errors – Part I Clustering method ICB Multiple EV/TA EV/EBITDA EV/OCF EV/EBIT EV/GI EV/S EV/FCFF Entity Multiples Distrib. Mean Median #03.5C 0,482 0,317 #03.3C 0,542 0,380 b03.6C 0,566 0,394 b03.4C 0,584 0,418 03.2C 0,675 0,505 03.1C 0,806 0,608 b03.7C 1,258 0,648 Multiple P/EBT P/E P/EBIT P/EBITDA P/B P/OCF P/GI P/TA P/S P/FCFF Equity Multiples Distrib. Mean Median #03.'2C 0,444 0,360 #03.'3C 0,445 0,360 b03.'1C 0,486 0,368 b04.'0C 0,508 0,373 b03.'4C 0,553 0,431 b03.'6C 0,565 0,401 03.9C 0,632 0,500 03.'5C 0,719 0,549 03.8C 0,795 0,614 03.'7C 1,207 0,723 Source: Own elaboration We marked the distributions’ code with a hash symbol (#) when the investigated multiple provides similar results as the best performing multiple appearing in first place; we marked them with a “b” when these multiples produce similar results as the best performing multiple (ranked first) but only when the Bonferroni correction is considered. We have distinguished the latter case from the first because the Bonferroni correction plays an important role when we compare several multiples. For instance, for the ICB clustering method we compare 10 (𝑥) different equity multiples which leads to a correction of 45 (𝑥 ∗ [𝑥 − 1]/2) times (α′ = α/45) on the considered significance level. We also marked the distributions with an asterisk symbol (*) when there is no statistical significant difference between the analysed multiples. 25 Table 5.15: The best market multiples characterized by the mean and the median of its distribution errors – Part II Clustering method Multiple EV/S Entity Multiples Distrib. Mean Median 16.1C 0,556 0,408 Set of ratios 01 Set of ratios 02 Set of ratios 03 Set of ratios 04 Set of ratios 05 Set of ratios 06 Set of ratios 07 Set of ratios 08 EV/TA EV/GI EV/S EV/FCFF EV/EBITDA EV/GI EV/S EV/TA EV/EBITDA EV/EBIT EV/FCFF #26.5C 26.2C 26.1C 26.7C #36.3C 36.2C 36.1C #46.5C 46.3C 46.4C 46.7C 0,506 0,590 0,631 0,930 0,476 0,616 0,659 0,424 0,496 0,507 0,958 0,335 0,449 0,467 0,630 0,361 0,467 0,483 0,294 0,370 0,376 0,647 EV/FCFF EV/GI EV/S EV/FCFF EV/S 56.7C *66.2C *66.1C 76.7C 86.1C 0,763 0,590 0,653 0,757 0,736 0,574 0,475 0,486 0,604 0,558 EV/FCFF 96.7C 0,722 0,579 EV/S EV/GI EV/TA #'06.1C '06.2C '16.5C 0,528 0,554 0,401 0,383 0,418 0,279 EV/S EV/GI EV/GI EV/S EV/OCF EV/GI EV/S *'26.1C *'26.2C *'36.2C *'36.1C #'46.6C '46.2C #'46.1C 0,528 0,577 0,655 0,754 0,572 0,585 0,652 0,385 0,404 0,517 0,593 0,403 0,456 0,492 EV/GI EV/S *'56.2C *'56.1C 0,584 0,656 0,477 0,483 EV/TA '76.5C 0,452 0,293 Set of ratios 09 Set of ratios 10 Set of ratios 11 Set of ratios 12 Set of ratios 13 Set of ratios 14 Set of ratios 15 Set of ratios 16 Set of ratios 17 P/OCF P/S P/B P/GI P/B P/S P/FCFF P/GI P/S Equity Multiples Distrib. Mean Median *16.'6C 0,507 0,400 *16.8C 0,527 0,416 *16.'4C 0,527 0,410 #26.9C 0,547 0,428 #26.'4C 0,558 0,445 #26.8C 0,587 0,452 26.'7C 1,001 0,694 #36.9C 0,606 0,488 36.8C 0,679 0,528 P/E P/EBT P/B P/OCF P/GI P/TA P/S P/FCFF P/FCFF P/GI P/S P/FCFF P/GI P/S P/GI P/S P/FCFF #46.'3C #46.'2C #46.'4C b46.'6C 46.9C 46.'5C 46.8C 46.'7C 56.'7C #66.9C 66.8C 76.'7C #86.9C 86.8C #96.9C b96.8C 96.'7C 0,444 0,445 0,507 0,565 0,621 0,714 0,825 0,920 0,776 0,588 0,690 0,775 0,601 0,722 0,570 0,637 0,769 0,369 0,370 0,400 0,438 0,506 0,600 0,635 0,784 0,576 0,454 0,515 0,624 0,474 0,562 0,452 0,477 0,557 P/B P/TA P/GI P/S P/GI P/S P/EBITDA P/OCF P/GI P/S P/GI P/S P/E P/EBT P/B #'16.'4C '15.'5C *'26.9C *'26.8C #'36.9C '36.8C #'46.'0C #'46.'6C '46.9C '46.8C *'56.9C *'56.8C *'66.'3C *'66.'2C '75.'4C 0,440 0,530 0,574 0,615 0,621 0,757 0,454 0,490 0,532 0,537 0,520 0,528 0,405 0,412 0,448 0,358 0,427 0,453 0,522 0,498 0,611 0,350 0,392 0,406 0,431 0,424 0,426 0,320 0,322 0,372 Multiple Source: Own elaboration As we may notice on the above tables, the EV/TA and the EV/EBITDA multiples are the ones amongst the better entity multiples for the considered clustering procedures, followed by the EV/EBIT and the EV/OCF multiples. On the side of the equity multiples, the P/E, the P/EBT and the P/B multiples rank always among the best market multiples, usually in this order. 26 However, as we referred on Section 3, we cannot directly compare entity to equity multiples using the estimation errors since the underlying variables are not the same. A more detailed ranking may not be given due to the impossibility to conduct a transitive thinking when the comparison of multiples is performed running formal tests. 5.8 The Best Set of Ratios vs the ICB approach At last, we investigate if a process of gathering firms in order to carry a valuation using multiples may be better accomplished if we rely on the financial characteristics rather than the same industry definition. We summarize our conclusions in Table 5.16 and Table 5.17, marking the distributions’ codes with the same notations (#; “b” and *) as in Section 5.7. Table 5.16: The best set of ratios vs the ICB approach characterized by the mean and the median of its distribution errors – Part I Multiple EV/TA EV/EBITDA EV/EBIT EV/OCF Clustering measures Set of ratios 11 Set of ratios 04 Set of ratios 17 ICB Set of ratios 02 Set of ratios 03 Set of ratios 04 ICB Set of ratios 04 ICB ICB Set of ratios 14 Entity Multiples Distrib. Mean Median #'16.5C 0,401 0,279 b46.5C 0,424 0,294 '76.5C 0,452 0,293 03.5C 0,482 0,317 26.5C 0,506 0,335 #36.3C 0,476 0,361 46.3C 0,496 0,370 b03.3C 0,542 0,380 *46.4C 0,507 0,376 *03.4C 0,584 0,418 *03.6C 0,566 0,394 *'46.6C 0,572 0,403 Multiple Clustering measures P/E Set of ratios 16 Set of ratios 04 ICB P/EBT Set of ratios 16 ICB Set of ratios 04 Set of ratios 11 Set of ratios 17 Set of ratios 04 Set of ratios 01 P/B ICB Set of ratios 02 Equity Multiples Distrib. Mean Median #'66.'3C 0,405 0,320 46.'3C 0,444 0,369 #03.'3C 0,445 0,360 #'66.'2C #03.'2C 46.'2C #'16.'4C '75.'4C 46.'4C 16.'4C 03.'4C 26.'4C 0,412 0,444 0,445 0,440 0,448 0,507 0,527 0,553 0,558 0,322 0,360 0,370 0,358 0,372 0,400 0,410 0,431 0,445 Source: Own elaboration The most promising multiples determined in Section 5.7, stated in Table 5.16, show how effective the use of the financial characteristics to tie up comparable companies is. For the EV/TA, the EV/EBITDA and the P/B multiples, the use of sets of ratios is highly compensated by the decreasing of the estimation errors. In fact, even for the remaining multiples (EV/EBIT; EV/OCF; P/E and P/EBT) the use of the financial characteristics to group the comparable firms performs similarly well as the use of the industry criterion – some present average estimation errors smaller but the difference is not statistically significant. Here we may also relate how the performance of the used set of ratios is determined by the correlation level analysed in Section 5.2. For instance, the EV/TA multiple is highly improved when we use the set of ratios 11 - ln(RoA) and ln(RoE) – which present a Spearman’s correlation with the EV/TA multiple of 0,55 and 0,56 respectively. Also, concerning the EV/TA multiple, the set of ratios 04 – RoA and RoE (which is similar but does not force values to be 27 positive), has Spearman’s correlations of 0,46 and 0,48 respectively; and the set of ratios 17 with correlations of 0,28 with the growth rate of Sales (Compound Annual Growth Rate, or CAGR, of the last 4 years), 0,32 with the growth rate of the Net Income (CAGR of the last 4 years) and 0,56 with the ln(RoE). The same applies to the other analysed multiples regarding its associated set of ratios. This reinforces the idea that using sets of ratios is beneficial, but not just any set, some customization is needed. Another positive fact is that the sets of ratios highly ranked are relatively parsimonious as concerns the number of formed clusters: set of ratios 11 (8 clusters); set of ratios 04 (19 clusters); set of ratios 17 (24 clusters); set of ratios 16 (6 clusters); set of ratios 03 (10 clusters); and set of ratios 16 (6 clusters), to name a few. Table 5.17: The best set of ratios vs the ICB approach characterized by the mean and the median of its distribution errors - Part II Multiple EV/GI EV/S EV/FCFF Clustering measures Set of ratios 10 Set of ratios 12 Set of ratios 15 Set of ratios 14 Set of ratios 06 Set of ratios 02 Set of ratios 03 Set of ratios 13 ICB Set of ratios 10 Set of ratios 12 Set of ratios 01 Set of ratios 02 Set of ratios 14 Set of ratios 06 Set of ratios 15 Set of ratios 03 Set of ratios 08 Set of ratios 13 ICB Set of ratios 09 Set of ratios 07 Set of ratios 05 Set of ratios 02 Set of ratios 04 ICB Entity Multiples Distrib. Mean Median #'06.2C 0,554 0,418 #'26.2C 0,577 0,404 '56.2C 0,584 0,477 '46.2C 0,585 0,456 b66.2C 0,590 0,475 b26.2C 0,590 0,449 36.2C 0,616 0,467 '36.2C 0,655 0,517 b03.2C 0,675 0,505 #'06.1C 0,528 0,383 b'26.1C 0,528 0,385 16.1C 0,556 0,408 26.1C 0,631 0,467 '46.1C 0,652 0,492 66.1C 0,653 0,486 '56.1C 0,656 0,483 36.1C 0,659 0,483 86.1C 0,736 0,558 '36.1C 0,754 0,593 03.1C 0,806 0,608 *96.7C 0,722 0,579 *76.7C 0,757 0,604 *56.7C 0,763 0,574 *26.7C 0,930 0,630 *46.7C 0,958 0,647 *03.7C 1,258 0,648 Multiple Clustering measures P/EBITDA Set of ratios 14 P/OCF P/GI P/TA P/S P/FCFF Source: Own elaboration 28 ICB Set of ratios 14 Set of ratios 01 ICB Set of ratios 04 Set of ratios 09 Set of ratios 15 Set of ratios 14 Set of ratios 02 Set of ratios 12 Set of ratios 06 Set of ratios 08 Set of ratios 03 Set of ratios 13 Set of ratios 04 ICB Set of ratios 11 Set of ratios 04 ICB Set of ratios 01 Set of ratios 15 Set of ratios 14 Set of ratios 02 Set of ratios 12 Set of ratios 09 Set of ratios 03 Set of ratios 06 Set of ratios 08 Set of ratios 13 ICB Set of ratios 04 Set of ratios 09 Set of ratios 07 Set of ratios 05 Set of ratios 04 Set of ratios 02 ICB Equity Multiples Distrib. Mean Median *'46.'0C 0,454 0,350 *04.'0C 0,508 0,373 *'46.'6C 0,490 0,392 *16.'6C 0,507 0,400 *03.'6C 0,565 0,401 *46.'6C 0,565 0,438 #96.9C 0,570 0,452 #'56.9C 0,520 0,424 #'46.9C 0,532 0,406 b26.9C 0,547 0,428 #'26.9C 0,574 0,453 #66.9C 0,588 0,454 b86.9C 0,601 0,474 b36.9C 0,606 0,488 '36.9C 0,621 0,498 46.9C 0,621 0,506 03.9C 0,632 0,500 #'15.'5C 0,530 0,427 46.'5C 0,714 0,600 03.'5C 0,719 0,549 #16.8C 0,527 0,416 '56.8C 0,528 0,426 b'46.8C 0,537 0,431 26.8C 0,587 0,452 b'26.8C 0,615 0,522 96.8C 0,637 0,477 36.8C 0,679 0,528 66.8C 0,690 0,515 86.8C 0,722 0,562 '36.8C 0,757 0,611 03.8C 0,795 0,614 46.8C 0,825 0,635 *96.'7C 0,769 0,557 *76.'7C 0,775 0,624 *56.'7C 0,776 0,576 *46.'7C 0,920 0,784 *26.'7C 1,001 0,694 *03.'7C 1,207 0,723 Table 5.17 presents identical results for the remaining multiples. The multiples for which the estimation errors are lower using sets of ratios instead of the same industry criterion are the EV/GI, the EV/S; the P/GI; the P/TA and the P/S. For the other multiples (EV/FCFF; P/EBITDA; P/OCF and P/FCFF) it is similar to use an approach using the set of ratios ranked first or the same industry criterion. 6 Conclusions and Future Research The main purpose of this study was to investigate if relying on the financial characteristics in order to conduct a valuation delivers better results than using the same industry criterion commonly employed. We investigated further questions related to each step of the valuation process such as the best aggregation measure; the best clustering procedure and the best performing multiples. The main investigation questions were the following: 1) Which financial ratios are highly correlated with the market multiples?; 2) What are the best central tendency measures to perform a valuation (mean, median, harmonic mean or geometric mean)?; 3) The use of economic and financial ratios to gather comparable companies performs better than the use of same industry principle? Formal tests were run to answer these questions. We conducted a broad investigation over 17 market multiples and several financial ratios, on a sample of 7.590 companies from several countries of the world. The year to which the figures are reported is the 2011. We concluded that the harmonic mean performs better for all multiples and clustering procedures. The second best measure is usually the geometric mean, followed by the median and the mean. When it comes to the EV/TA and the P/B multiples, the median performs better than the geometric mean but the other measures do not change their rank. The best clustering approach examination, i.e. hierarchical vs. non-hierarchical clustering using the selected sets of ratios or the ICB level when an industry classification is employed, allowed concluding that, for almost all multiples, there aren’t significant dissimilarities subjacent to this choice. When there is a difference statistically significant between the hierarchical and the nonhierarchical clustering we conclude that the k-means approach minimizes the estimation errors. But even in these cases the hierarchical analysis was important because it allowed identifying the number of subjacent clusters. The finding regarding the indifference of the classification (ICB) level used conflicts with Alford (1992, p. 106) and Schreiner’s (2007a, p. 110), despite the underlying methodology not being exactly comparable. 29 The market multiples that lead us to the smaller estimation errors were the EV/TA, the EV/EBITDA, the EV/EBIT and the EV/OCF on the side of the entity multiples and the P/E, the P/EBT and the P/B, when it comes to equity multiples. A broader ranking revealed hard to establish due to the intransitivity of positions. Finally, we found that employing sets of ratios, i.e. financial characteristics, to gather comparable firms improves the estimation errors of almost all multiples. Even when we cannot conclude that the use of financial parameters improves the estimation errors, they are equally effective. We believe that further investigations regarding the consistency of these results over time may be of interest. Limiting the sample to more homogeneous countries or to countries alone may also have an impact on the results. The exclusion from the sample of banks and insurance firms, since they have different regulatory rules to fulfil and are usually treated separately on valuations, could be of interest as well. The investigated procedures should also include forecasted multiples (the forward P/E, for example) as they are quite well ranked in the related literature. In conclusion, we believe these results are important because they do not only indicate the more reliable market multiples and procedures to conduct a valuation, but also indicate the different financial factors with impact on each multiple. References Alford, A. W. (1992). The effect of the set of comparable firms on the accuracy of the priceearnings valuation method. Journal of Accounting Research, Vol. 30, 94-108. Baker, M., & Ruback, R. S. (1999). Estimating Industry Multiples. Boston: Working Paper, Harvard Business School. Bhojraj, S., & Lee, C. M. (2002). Who Is My Peer? A Valuation-based approach to the selection of comparable firms. Journal of Accounting Research Vol. 40, Issue 2, 407-439. Bodie, Z., Kane, A., & Marcus, A. J. (2008). Investments (7th ed.). McGraw-Hill International Edition. Brandão, E. (2002). Finanças (2ª ed.). Porto Editora. Brealey, R. A., Myers, S. C., & Allen, F. (2008). Principles of Corporate Finance (9th ed.). McGraw-Hill. 30 Brigham, E. F., & Gapenski, L. C. (1994). Financial Management - Theory and Practice (7ª ed.). The Dryden Press. Cheng, C., & McNamara , R. (2000). The Valuation Accuracy of the Price-Earnings and PriceBook Benchmark Valuation Methods. Review of Quantitative Finance and Accounting Vol. 15, 349-370. Cohen, R. D. (2005). The Relative Valuation of an Equity Price Index. Obtido de http://rdcohen.50megs.com/RVEPIabstract.htm Cooper, I., & Cordeiro, L. (2008). Optimal Equity Valuation Using Multiples: The Number of Comparable Firms. SSRN Working Paper n. 1272349. Damodaran, A. (1997). Corporate Finance - Theory and Practice. New York: John Wiley & Sons, Inc. Damodaran, A. (2002). Investment Valuation: Tools and Techniques for Determining the Value of Any Asset (2nd ed.). New York: John Wiley and Sons Inc. Dittmann, I., & Weiner, C. (2005). Selecting Comparables for the Valuation of European Firms. SFB 649 Discussion Paper n. SFB649DP2005-002, Humboldt-Universität zu Berlin, School of Business and Economics, Germany. Dunn, O. (1961). Multiple Comparisons Among Means. Journal of the American Statistical Association, 56, pp. 52-64. Fernández, P. (2007). Company Valuation Methods: The Most Common Errors in Valuations. SSRN Working Paper n. 1019977. Guimarães, J. F. (1995). A obrigatoriedade da nomeação de um ROC pelas empresas. Boletim da CROC, n.º3, Abril/Junho, 23-4. Herrmann, V., & Richter, F. (Julho de 2003). Pricing with Performance-Controlled Multiples. Schmalenbach Business Review,Vol. 55, 194–219. Kim, M., & Ritter, J. R. (Setembro de 1999). Valuing IPOs. Journal of Financial Economics, Vol. 53, No. 3, 409-437. Liu, J., Nissim, D., & Thomas, J. (2002). Equity Valuation Using Multiples. Journal of Accounting Research Vol. 40, Issue 1: 135-172. Maroco, J. (2007). Análise Estatística - Com utilização do SPSS (3ª ed.). Lisboa: Edições Sílabo, Lda. Rodrigues, J. (2009). Sistema de Normalização Contabilística Explicado. Porto: Porto Editora. Schreiner, A. (2007a). Equity Valuation Using Multiples: An Empirical Investigation¸ Dissertation, University of St.Gallen, N.º 3313. Austria. 31 Sloan, R. G. (2002). Discussion of Who Is My Peer? A Valuation-Based Approach to the Selection of Comparable Firms. Journal of Accounting Research, Vol. 40, Issue 2: 441-444. Thomson Reuters. (29 de Setembro de 2010). Worldscope Database: Data Definitions Guide. Yoo, Y. K. (2006). The Valuation Accuracy of Equity Valuation Using a Combination of Multiples. Review of Accounting and Finance, Vol. 5: 108-123. 32 Appendix Table A.1: Estimation errors by central tendency measure, market multiple and ICB level, characterized by the mean and the median of its distribution errors - Part I P/E P/EBT P/EBIT P/EBITDA P/GI P/S EV/FCFF EV/OCF EV/TA EV/EBIT EV/EBITDA EV/GI EV/S Distrib. #01.1C 01.1D 01.1B 01.1A #01.2C 01.2D 01.2B 01.2A #01.3C 01.3D 01.3B 01.3A #01.4C 01.4D 01.4B 01.4A #01.5C 01.5B 01.5D 01.5A #01.6C 01.6D 01.6B 01.6A 01.7C 01.7D 01.7B 01.7A #01.8C 01.8D 01.8B 01.8A #01.9C 01.9D 01.9B 01.9A #01.'0C 01.'0D 01.'0B 01.'0A #01.'1C 01.'1D 01.'1B 01.'1A #01.'2C 01.'2D 01.'2B 01.'2A #01.'3C 01.'3D 01.'3B 01.'3A Industry Mean Median 0,812 1,238 1,348 1,934 0,660 0,850 0,916 1,129 0,539 0,631 0,668 0,749 0,575 0,678 0,717 0,822 0,479 0,542 0,561 0,685 0,596 0,740 0,813 0,917 1,092 2,094 2,486 3,411 0,847 1,299 1,372 2,051 0,753 0,835 0,895 1,116 0,529 0,611 0,629 0,734 0,486 0,549 0,562 0,662 0,445 0,491 0,496 0,574 0,442 0,481 0,490 0,562 0,639 0,590 0,579 0,641 0,517 0,458 0,440 0,465 0,394 0,342 0,338 0,363 0,425 0,346 0,351 0,367 0,315 0,328 0,336 0,380 0,420 0,374 0,360 0,388 0,702 0,514 0,520 0,567 0,661 0,603 0,603 0,635 0,502 0,479 0,480 0,498 0,409 0,365 0,365 0,386 0,380 0,340 0,343 0,358 0,361 0,336 0,339 0,355 0,367 0,332 0,334 0,338 Distrib. #02.1C 02.1D 02.1B 02.1A #02.2C 02.2D 02.2B 02.2A #02.3C 02.3D 02.3B 02.3A #02.4C 02.4D 02.4B 02.4A #02.5C 02.5B 02.5D 02.5A #02.6C 02.6D 02.6B 02.6A 02.7C 02.7D 02.7B 02.7A #02.8C 02.8D 02.8B 02.8A #02.9C 02.9D 02.9B 02.9A #02.'0C 02.'0D 02.'0B 02.'0A #02.'1C 02.'1D 02.'1B 02.'1A #02.'2C 02.'2D 02.'2B 02.'2A #02.'3C 02.'3D 02.'3B 02.'3A Supersector Mean Median 0,810 1,209 1,345 1,832 0,655 0,831 0,884 1,092 0,542 0,619 0,661 0,734 0,580 0,669 0,712 0,812 0,485 0,543 0,557 0,680 0,575 0,697 0,741 0,857 1,170 2,152 2,576 3,428 0,838 1,270 1,357 1,956 0,647 0,817 0,866 1,087 0,518 0,602 0,624 0,723 0,483 0,550 0,569 0,658 0,445 0,490 0,501 0,573 0,440 0,481 0,490 0,564 0,623 0,557 0,559 0,600 0,514 0,427 0,430 0,458 0,382 0,334 0,329 0,349 0,412 0,339 0,350 0,363 0,324 0,323 0,329 0,376 0,408 0,357 0,348 0,368 0,660 0,527 0,520 0,555 0,647 0,576 0,557 0,585 0,515 0,480 0,476 0,490 0,398 0,360 0,362 0,371 0,375 0,334 0,331 0,354 0,360 0,340 0,335 0,352 0,365 0,336 0,334 0,333 33 Distrib. Sector Mean Median Distrib. #03.1C 03.1D 03.1B 03.1A #03.2C 03.2D 03.2B 03.2A #03.3C 03.3D 03.3B 03.3A #03.4C 03.4D 03.4B 03.4A #03.5C 03.5B 03.5D 03.5A #03.6C 03.6D 03.6B 03.6A 03.7C 03.7D 03.7B 03.7A #03.8C 03.8D 03.8B 03.8A #03.9C 03.9D 03.9B 03.9A #03.'0C 03.'0D 03.'0B 03.'0A #03.'1C 03.'1D 03.'1B 03.'1A #03.'2C 03.'2D 03.'2B 03.'2A #03.'3C 03.'3D 03.'3B 03.'3A 0,806 1,163 1,290 1,721 0,675 0,837 0,880 1,082 0,542 0,616 0,656 0,729 0,584 0,667 0,711 0,806 0,482 0,545 0,554 0,670 0,566 0,684 0,729 0,837 1,258 2,145 2,500 3,359 0,795 1,190 1,288 1,827 0,632 0,788 0,829 1,049 0,523 0,596 0,621 0,712 0,486 0,546 0,565 0,650 0,444 0,488 0,495 0,569 0,445 0,480 0,489 0,560 0,608 0,540 0,531 0,578 0,505 0,437 0,417 0,444 0,380 0,325 0,322 0,343 0,418 0,346 0,348 0,355 0,317 0,322 0,325 0,368 0,394 0,353 0,347 0,348 0,648 0,516 0,521 0,560 0,614 0,558 0,543 0,574 0,500 0,466 0,470 0,482 0,387 0,355 0,353 0,364 0,368 0,334 0,334 0,347 0,360 0,335 0,335 0,349 0,360 0,332 0,328 0,329 #04.1C 04.1D 04.1B 04.1A #04.2C 04.2D 04.2B 04.2A #04.3C 04.3D 04.3B 04.3A #04.4C 04.4D 04.4B 04.4A #04.5C 04.5B 04.5D 04.5A 04.6C 04.6D 04.6B 04.6A #04.7C 04.7D 04.7B 04.7A #04.8C 04.8D 04.8B 04.8A #04.9C 04.9D 04.9B 04.9A #04.'0C 04.'0D 04.'0B 04.'0A #04.'1C 04.'1D 04.'1B 04.'1A #04.'2C 04.'2D 04.'2B 04.'2A #04.'3C 04.'3D 04.'3B 04.'3A Subsector Mean Median 0,838 1,140 1,248 1,623 0,688 0,828 0,876 1,051 0,544 0,611 0,648 0,721 0,590 0,666 0,705 0,797 0,488 0,551 0,553 0,660 0,565 0,677 0,720 0,828 1,173 1,876 2,079 2,985 0,780 1,125 1,223 1,670 0,630 0,770 0,806 1,015 0,508 0,580 0,604 0,693 0,474 0,529 0,541 0,624 0,437 0,479 0,486 0,555 0,440 0,470 0,478 0,545 0,583 0,513 0,488 0,544 0,470 0,419 0,408 0,451 0,368 0,330 0,324 0,336 0,402 0,350 0,344 0,358 0,315 0,311 0,317 0,358 0,389 0,347 0,348 0,342 0,624 0,523 0,528 0,582 0,582 0,537 0,504 0,548 0,482 0,453 0,455 0,470 0,373 0,355 0,357 0,370 0,362 0,337 0,339 0,356 0,345 0,331 0,331 0,355 0,350 0,324 0,316 0,340 Table A.1: Estimation errors by central tendency measure, market multiple and ICB level, characterized by the mean and the median of its distribution errors - Part II P/FCFF P/OCF P/TA P/B Distrib. #01.'4C 01.'4B 01.'4D 01.'4A #01.'5C 01.'5D 01.'5B 01.'5A #01.'6C 01.'6D 01.'6B 01.'6A #01.'7C 01.'7D 01.'7B 01.'7A Industry Mean Median 0,553 0,668 0,672 0,862 0,734 1,089 1,190 1,603 0,583 0,713 0,756 0,885 1,179 2,269 2,653 3,832 0,437 0,433 0,437 0,477 0,613 0,497 0,503 0,551 0,454 0,415 0,411 0,415 0,767 0,572 0,573 0,602 Distrib. #02.'4C 02.'4B 02.'4D 02.'4A #02.'5C 02.'5D 02.'5B 02.'5A #02.'6C 02.'6D 02.'6B 02.'6A #02.'7C 02.'7D 02.'7B 02.'7A Supersector Mean Median 0,551 0,660 0,666 0,854 0,715 1,041 1,128 1,533 0,566 0,686 0,728 0,848 1,180 2,234 2,610 3,740 0,421 0,431 0,434 0,481 0,564 0,499 0,499 0,530 0,417 0,394 0,387 0,400 0,742 0,557 0,553 0,595 34 Distrib. Sector Mean Median Distrib. #03.'4C 03.'4B 03.'4D 03.'4A #03.'5C 03.'5D 03.'5B 03.'5A #03.'6C 03.'6D 03.'6B 03.'6A #03.'7C 03.'7D 03.'7B 03.'7A 0,553 0,661 0,659 0,836 0,719 1,022 1,094 1,523 0,565 0,679 0,725 0,835 1,207 2,212 2,533 3,684 0,431 0,436 0,429 0,468 0,549 0,499 0,500 0,522 0,401 0,378 0,382 0,392 0,723 0,553 0,564 0,593 #04.'4C 04.'4D 04.'4B 04.'4A #04.'5C 04.'5D 04.'5B 04.'5A #04.'6C 04.'6D 04.'6B 04.'6A #04.'7C 04.'7D 04.'7B 04.'7A Subsector Mean Median 0,543 0,643 0,659 0,808 0,703 0,975 1,045 1,413 0,551 0,659 0,685 0,814 1,292 2,132 2,373 3,527 0,431 0,417 0,422 0,454 0,532 0,491 0,485 0,511 0,390 0,378 0,371 0,388 0,709 0,565 0,565 0,608 Table A.2: Estimation errors by central tendency measure, market multiple and clustering method, characterized by the mean and the median of its distribution errors - Part I EV/S Set of ratios 01 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median #15.1C 15.1D 15.1B 15.1A 0,574 0,724 0,742 0,998 0,427 0,402 0,406 0,449 #16.1C 16.1D 16.1B 16.1A 0,556 0,672 0,694 0,905 0,408 0,369 0,373 0,416 EV/S Set of ratios 03 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median #35.1C 35.1D 35.1B 35.1A 0,700 0,945 0,961 1,382 0,502 0,451 0,455 0,503 #36.1C 36.1D 36.1B 36.1A 0,659 0,859 0,878 1,215 0,483 0,438 0,435 0,492 EV/S EV/S EV/S Set of ratios 08 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median #85.1C 85.1D 85.1B 85.1A 0,796 1,236 1,278 2,011 0,640 0,587 0,593 0,684 #86.1C 86.1B 86.1D 86.1A 0,736 1,080 1,089 1,792 0,558 0,533 0,531 0,648 EV/GI 0,636 0,830 0,848 1,196 0,484 0,416 0,421 0,480 #26.1C 26.1D 26.1B 26.1A 0,631 0,818 0,833 1,174 0,467 0,421 0,412 0,472 Set of ratios 06 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median #65.1C 65.1D 65.1B 65.1A 0,658 0,865 0,868 1,311 0,500 0,480 0,475 0,578 #66.1C 66.1D 66.1B 66.1A 0,653 0,845 0,888 1,210 0,486 0,435 0,431 0,501 Set of ratios 10 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median #'05.1C 05.1D 05.1B 05.1A 0,599 0,744 0,777 0,978 0,447 0,403 0,393 0,427 #'06.1C 06.1D 06.1B 06.1A 0,528 0,610 0,630 0,765 0,383 0,344 0,346 0,373 Set of ratios 13 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median #'25.1C 25.1D 25.1B 25.1A #'35.1C 35.1D 35.1B 35.1A 0,530 0,585 0,609 0,701 0,431 0,439 0,442 0,434 #'26.1C 26.1D 26.1B 26.1A 0,528 0,586 0,613 0,695 0,385 0,382 0,396 0,431 0,743 1,051 1,121 1,543 0,608 0,523 0,524 0,589 #'36.1C 36.1D 36.1B 36.1A 0,754 1,051 1,117 1,534 0,593 0,526 0,517 0,579 Set of ratios 14 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median Set of ratios 15 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median #'45.1C 45.1D 45.1B 45.1A #'55.1C 55.1D 55.1B 55.1A 0,660 0,873 0,870 1,337 0,489 0,458 0,454 0,568 #'46.1C 46.1D 46.1B 46.1A 0,652 0,857 0,863 1,282 0,492 0,458 0,453 0,548 #25.2C 25.2D 25.2B 25.2A 0,599 0,750 0,763 1,000 0,467 0,429 0,429 0,462 #26.2C 26.2D 26.2B 26.2A 0,590 0,745 0,769 0,994 0,449 0,416 0,418 0,459 Set of ratios 06 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median EV/GI #25.1C 25.1D 25.1B 25.1A Set of ratios 12 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median Set of ratios 02 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median EV/GI Set of ratios 02 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median #65.2C 65.2D 65.2B 65.2A 0,601 0,750 0,776 0,997 0,466 0,437 0,439 0,482 #66.2C 66.2D 66.2B 66.2A 0,590 0,740 0,770 0,970 0,475 0,433 0,435 0,451 0,669 0,847 0,885 1,139 0,564 0,458 0,455 0,475 #'56.1C 56.1D 56.1B 56.1A 0,656 0,797 0,834 1,049 0,483 0,434 0,434 0,453 Set of ratios 03 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median #35.2C 35.2D 35.2B 35.2A 0,628 0,775 0,814 1,011 0,471 0,414 0,408 0,427 #36.2C 36.2D 36.2B 36.2A 0,616 0,763 0,790 0,994 0,467 0,413 0,413 0,432 Set of ratios 10 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median #'05.2C 05.2D 05.2B 05.2A 0,573 0,712 0,740 0,933 0,452 0,401 0,405 0,420 #'06.2C 06.2D 06.2B 06.2A 0,554 0,674 0,690 0,891 0,418 0,396 0,398 0,419 Set of ratios 12 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median Set of ratios 13 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median #'25.2C 25.2D 25.2B 25.2A #'35.2C 35.2D 35.2B 35.2A 0,582 0,641 0,677 0,767 0,419 0,364 0,370 0,393 #'26.2C 26.2D 26.2B 26.2A 0,577 0,659 0,679 0,806 0,404 0,377 0,387 0,407 35 0,661 0,822 0,858 1,069 0,530 0,448 0,447 0,455 #'36.2C 36.2D 36.2B 36.2A 0,655 0,812 0,852 1,069 0,517 0,455 0,454 0,478 EV/GI Table A.2: Estimation errors by central tendency measure, market multiple and clustering method, characterized by the mean and the median of its distribution errors - Part II Set of ratios 14 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median Set of ratios 15 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median #'45.2C 45.2D 45.2B 45.2A #'55.2C 55.2D 55.2B 55.2CA 0,599 0,732 0,748 0,961 0,466 0,406 0,413 0,460 #'46.2C 46.2D 46.2B 46.2A 0,585 0,716 0,730 0,929 0,456 0,414 0,411 0,440 EV/EBITDA Set of ratios 03 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median #35.3C 35.3D 35.3B 35.3A 0,485 0,548 0,566 0,638 0,364 0,321 0,322 0,338 #36.3C 36.3D 36.3B 36.3A 0,476 0,542 0,558 0,638 0,361 0,322 0,325 0,343 0,586 0,690 0,723 0,866 0,478 0,397 0,403 0,422 #'56.2C 56.2D 56.2B 56.2A 0,584 0,671 0,692 0,844 0,477 0,425 0,417 0,423 Set of ratios 04 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median #45.3C 45.3D 45.3B 45.3A 0,496 0,564 0,584 0,667 0,364 0,346 0,351 0,373 #46.3C 46.3D 46.3B 46.3A 0,496 0,570 0,587 0,675 0,370 0,359 0,360 0,369 EV/EBIT Set of ratios 04 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median #45.4C 45.4D 45.4B 45.4A 0,519 0,585 0,608 0,698 0,379 0,350 0,353 0,369 #46.4C 46.4D 46.4B 46.4A 0,507 0,575 0,594 0,679 0,376 0,349 0,346 0,363 EV/TA EV/TA Set of ratios 02 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median #25.5C 25.5B 25.5D 25.5A 0,507 0,575 0,595 0,716 0,330 0,332 0,341 0,400 #26.5C 26.5B 26.5D 26.5A 0,506 0,576 0,591 0,710 0,335 0,334 0,346 0,399 Set of ratios 04 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median #45.5C 45.5B 45.5D 45.5A 0,462 0,515 0,550 0,676 0,318 0,336 0,355 0,429 #46.5C 46.5B 46.5D 46.5A 0,424 0,469 0,473 0,549 0,294 0,270 0,278 0,316 Set of ratios 11 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median Set of ratios 17 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median #'15.5C 15.5D 15.5B 15.5A #'75.5C 75.5B 75.5D 75.5A 0,398 0,431 0,432 0,489 0,288 0,261 0,256 0,280 #'16.5C 16.5D 16.5B 16.5A 0,401 0,428 0,433 0,479 0,279 0,257 0,254 0,262 0,455 0,488 0,500 0,575 0,302 0,293 0,299 0,325 #'76.5C 76.5B 76.5D 76.5A 0,452 0,486 0,508 0,601 0,293 0,303 0,317 0,358 EV/OCF Set of ratios 14 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median #'45.6C 45.6D 45.6B 45.6A 0,559 0,639 0,664 0,761 0,402 0,339 0,329 0,358 #'46.6C 46.6D 46.6B 46.6A 0,572 0,650 0,673 0,768 0,403 0,351 0,343 0,366 EV/FCFF Set of ratios 02 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median #25.7C 25.7D 25.7B 25.7A 0,920 1,436 1,566 2,113 0,641 0,506 0,511 0,562 #26.7C 26.7D 26.7B 26.7A 0,930 1,408 1,536 2,046 0,630 0,507 0,497 0,552 EV/FCFF Set of ratios 05 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median #55.7C 55.7D 55.7B 55.7A 0,787 1,164 1,323 1,781 0,596 0,517 0,523 0,562 #56.7C 56.7D 56.7B 56.7A 0,763 1,074 1,124 1,606 0,574 0,491 0,494 0,549 36 Set of ratios 04 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median #45.7C 45.7D 45.7B 45.7A 0,925 1,491 1,606 2,216 0,664 0,509 0,519 0,583 #46.7C 46.7D 46.7B 46.7A 0,958 1,484 1,593 2,208 0,647 0,511 0,507 0,587 Set of ratios 07 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median #75.7C 75.7D 75.7B 75.7A 0,757 1,110 1,200 1,619 0,612 0,521 0,507 0,549 #76.7C 76.7D 76.7B 76.7A 0,757 1,107 1,199 1,603 0,604 0,514 0,508 0,551 Table A.2: Estimation errors by central tendency measure, market multiple and clustering method, characterized by the mean and the median of its distribution errors - Part III EV/FCFF Set of ratios 09 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median #95.7C 95.7D 95.7B 95.7A 0,846 1,251 1,332 1,807 0,605 0,501 0,510 0,567 #96.7C 96.7D 96.7B 96.7A 0,722 0,975 1,014 1,401 0,579 0,495 0,501 0,563 P/S Set of ratios 01 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median #15.8C 15.8D 15.8B 15.8A 0,553 0,689 0,711 0,977 0,439 0,422 0,426 0,453 #16.8C 16.8D 16.8B 16.8A 0,527 0,641 0,637 0,900 0,416 0,385 0,380 0,419 P/S Set of ratios 03 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median #35.8C 35.8D 35.8B 35.8A 0,742 1,058 1,074 1,637 0,569 0,545 0,547 0,587 #36.8C 36.8D 36.8B 36.8A 0,679 0,929 0,928 1,385 0,528 0,532 0,531 0,590 P/S Set of ratios 06 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median #65.8C 65.8D 65.8B 65.8A 0,671 0,898 0,921 1,312 0,526 0,497 0,503 0,565 #66.8C 66.8D 66.8B 66.8A 0,690 0,901 0,938 1,257 0,515 0,478 0,478 0,507 P/S P/S Set of ratios 09 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median #95.8C 95.8D 95.8B 95.8A 0,747 0,985 1,010 1,450 0,536 0,497 0,493 0,561 #96.8C 96.8D 96.8B 96.8A 0,637 0,789 0,818 1,053 0,477 0,443 0,442 0,468 Set of ratios 02 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median #25.8C 25.8D 25.8B 25.8A 0,596 0,780 0,789 1,124 0,470 0,433 0,432 0,467 #26.8C 26.8D 26.8B 26.8A 0,587 0,765 0,778 1,106 0,452 0,427 0,424 0,464 Set of ratios 04 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median #45.8C 45.8D 45.8B 45.8A 0,849 1,303 1,337 2,159 0,648 0,622 0,622 0,697 #46.8C 46.8D 46.8B 46.8A 0,825 1,245 1,266 2,043 0,635 0,604 0,610 0,699 Set of ratios 08 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median #85.8C 85.8D 85.8B 85.8A 0,809 1,218 1,277 1,921 0,628 0,579 0,579 0,635 #86.8C 86.8D 86.8B 86.8A 0,722 1,045 1,044 1,658 0,562 0,510 0,506 0,590 Set of ratios 12 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median #'25.8C 25.8D 25.8B 25.8A 0,613 0,729 0,760 0,927 0,512 0,517 0,528 0,527 #'26.8C 26.8D 26.8B 26.8A 0,615 0,749 0,820 0,933 0,522 0,505 0,512 0,486 Set of ratios 13 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median Set of ratios 14 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median #'35.8C 35.8D 35.8B 35.8A #'45.8C 45.8D 45.8B 45.8A 0,762 1,062 1,148 1,578 0,615 0,550 0,559 0,604 #'36.8C 36.8D 36.8B 36.8A 0,757 1,050 1,114 1,549 0,611 0,553 0,556 0,602 0,562 0,681 0,690 0,947 0,443 0,427 0,429 0,492 #'46.8C 46.8D 46.8B 46.8A 0,537 0,647 0,649 0,903 0,431 0,415 0,411 0,466 P/S Set of ratios 15 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median #'55.8C 55.8D 55.8B 55.8A 0,566 0,656 0,666 0,845 0,460 0,432 0,435 0,467 #'56.8C 56.8D 56.8B 56.8A 0,528 0,603 0,617 0,773 0,426 0,389 0,389 0,429 P/GI Set of ratios 02 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median #25.9C 25.9D 25.9B 25.9A 0,553 0,683 0,692 0,914 0,442 0,428 0,434 0,473 #26.9C 26.9D 26.9B 26.9A 0,547 0,677 0,688 0,910 0,428 0,421 0,423 0,461 37 Set of ratios 03 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median #35.9C 35.9D 35.9B 35.9A 0,628 0,781 0,821 1,036 0,490 0,448 0,449 0,489 #36.9C 36.9D 36.9B 36.9A 0,606 0,751 0,767 0,992 0,488 0,453 0,452 0,485 Table A.2: Estimation errors by central tendency measure, market multiple and clustering method, characterized by the mean and the median of its distribution errors - Part IV P/GI Set of ratios 04 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median #45.9C 45.9D 45.9B 45.9A 0,648 0,836 0,867 1,154 0,526 0,503 0,504 0,528 #46.9C 46.9D 46.9B 46.9A 0,621 0,796 0,812 1,103 0,506 0,479 0,476 0,535 P/GI P/GI P/GI Set of ratios 08 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median #85.9C 85.9D 85.9B 85.9A 0,633 0,801 0,853 1,073 0,507 0,469 0,473 0,493 #86.9C 86.9D 86.9B 86.9A 0,601 0,757 0,791 1,018 0,474 0,450 0,455 0,492 Set of ratios 06 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median #65.9C 65.9D 65.9B 65.9A 0,587 0,724 0,736 0,961 0,470 0,441 0,447 0,482 #66.9C 66.9D 66.9B 66.9A 0,588 0,721 0,747 0,945 0,454 0,441 0,438 0,463 Set of ratios 09 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median #95.9C 95.9D 95.9B 95.9A 0,612 0,747 0,773 0,991 0,486 0,452 0,455 0,486 #96.9C 96.9D 96.9B 96.9A 0,570 0,690 0,709 0,900 0,452 0,431 0,435 0,474 Set of ratios 12 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median Set of ratios 13 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median #'25.9C 25.9D 25.9B 25.9A #'35.9C 35.9D 35.9B 35.9A 0,572 0,664 0,727 0,822 0,480 0,427 0,457 0,428 #'26.9C 26.9D 26.9B 26.9A 0,574 0,676 0,722 0,854 0,453 0,398 0,435 0,443 0,624 0,762 0,805 0,988 0,498 0,464 0,467 0,464 #'36.9C 36.9D 36.9B 36.9A 0,621 0,756 0,798 0,986 0,498 0,463 0,455 0,470 Set of ratios 14 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median Set of ratios 15 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median #'45.9C 45.9D 45.9B 45.9A #'55.9C 55.9D 55.9B 55.9A 0,546 0,637 0,652 0,808 0,423 0,398 0,394 0,423 #'46.9C 46.9D 46.9B 46.9A 0,532 0,617 0,634 0,779 0,406 0,388 0,391 0,411 0,520 0,585 0,601 0,715 0,422 0,385 0,384 0,408 #'56.9C 56.9D 56.9B 56.9A 0,520 0,586 0,603 0,714 0,424 0,390 0,393 0,405 P/B P/E P/EBT P/EBITDA Set of ratios 14 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median #'45.'0C 45.'0D 45.'0B 45.'0A 0,465 0,511 0,522 0,602 0,349 0,328 0,329 0,335 #'46.'0C 46.'0D 46.'0B 46.'0A 0,454 0,503 0,516 0,597 0,350 0,323 0,329 0,335 Set of ratios 04 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median Set of ratios 16 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median #45.'2C 45.'2D 45.'2B 45.'2A #'65.'2C 65.'2D 65.'2B 65.'2A 0,444 0,492 0,504 0,576 0,354 0,348 0,348 0,362 #46.'2C 46.'2D 46.'2B 46.'2A 0,445 0,492 0,499 0,574 0,370 0,344 0,345 0,361 0,420 0,454 0,458 0,518 0,331 0,302 0,306 0,322 #'66.'2C 66.'2D 66.'2B 66.'2A 0,412 0,446 0,452 0,509 0,322 0,295 0,296 0,321 Set of ratios 04 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median Set of ratios 16 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median #45.'3C 45.'3D 45.'3B 45.'3A #'65.'3C 65.'3D 65.'3B 65.'3A 0,448 0,491 0,503 0,571 0,370 0,342 0,339 0,347 #46.'3C 46.'3D 46.'3B 46.'3A 0,444 0,486 0,497 0,563 0,369 0,345 0,338 0,346 0,412 0,443 0,448 0,505 0,318 0,302 0,302 0,311 #'66.'3C 66.'3D 66.'3B 66.'3A 0,405 0,435 0,440 0,494 0,320 0,300 0,299 0,305 Set of ratios 01 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median Set of ratios 02 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median #15.'4C 15.'4B 15.'4D 15.'4A #25.'4C 25.'4D 25.'4B 25.'4A 0,524 0,633 0,627 0,791 0,411 0,419 0,422 0,447 #16.'4C 16.'4B 16.'4D 16.'4A 0,527 0,613 0,621 0,779 0,410 0,401 0,409 0,445 38 0,555 0,664 0,666 0,847 0,440 0,429 0,428 0,462 #26.'4C 26.'4D 26.'4B 26.'4A 0,558 0,668 0,675 0,850 0,445 0,428 0,430 0,464 P/B Table A.2: Estimation errors by central tendency measure, market multiple and clustering method, characterized by the mean and the median of its distribution errors - Part V Set of ratios 04 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median Set of ratios 11 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median #45.'4C 45.'4B 45.'4D 45.'4A #'15.'4C 15.'4D 15.'4B 15.'4A 0,551 0,669 0,684 0,889 0,451 0,458 0,461 0,516 #46.'4C 46.'4B 46.'4D 46.'4A 0,507 0,596 0,594 0,735 0,400 0,377 0,387 0,408 0,446 0,499 0,497 0,598 0,367 0,352 0,344 0,383 #'16.'4C 16.'4D 16.'4B 16.'4A 0,440 0,489 0,492 0,578 0,358 0,357 0,348 0,367 P/OCF P/TA P/B Set of ratios 17 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median #'75.'4C 75.'4B 75.'4D 75.'4A 0,448 0,503 0,505 0,606 0,372 0,373 0,374 0,385 #'76.'4C 76.'4B 76.'4D 76.'4A 0,464 0,518 0,529 0,651 0,386 0,382 0,387 0,418 Set of ratios 04 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median Set of ratios 11 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median #45.'5C 45.'5D 45.'5B 45.'5A #'15.'5C 15.'5D 15.'5B 15.'5A 0,756 1,146 1,188 1,720 0,627 0,512 0,517 0,612 #46.'5C 46.'5D 46.'5B 46.'5A 0,714 0,976 1,049 1,362 0,600 0,439 0,437 0,470 0,530 0,623 0,643 0,805 0,427 0,391 0,394 0,431 #'16.'5C 16.'5D 16.'5B 16.'5A 0,576 0,703 0,750 0,915 0,458 0,395 0,385 0,395 Set of ratios 01 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median Set of ratios 04 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median #15.'6C 15.'6D 15.'6B 15.'6A #45.'6C 45.'6D 45.'6B 45.'6A 0,511 0,585 0,603 0,701 0,408 0,376 0,378 0,390 #16.'6C 16.'6D 16.'6B 16.'6A 0,507 0,579 0,600 0,699 0,400 0,364 0,368 0,399 0,576 0,689 0,721 0,853 0,436 0,419 0,421 0,431 #46.'6C 46.'6D 46.'6B 46.'6A 0,565 0,671 0,698 0,827 0,438 0,405 0,403 0,411 P/FCFF P/FCFF P/OCF Set of ratios 14 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median #'45.'6C 45.'6D 45.'6B 45.'6A 0,495 0,554 0,575 0,657 0,392 0,358 0,346 0,364 #'46.'6C 46.'6D 46.'6B 46.'6A 0,490 0,547 0,567 0,652 0,392 0,337 0,343 0,362 Set of ratios 02 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median Set of ratios 04 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median #25.'7C 25.'7D 25.'7B 25.'7A #45.'7C 45.'7D 45.'7B 45.'7A 0,935 1,552 1,795 2,510 0,705 0,532 0,532 0,577 #26.'7C 26.'7D 26.'7B 26.'7A 1,001 1,622 1,847 2,522 0,694 0,530 0,523 0,577 0,764 0,533 0,543 0,578 #46.'7C 46.'7D 46.'7B 46.'7A 0,920 1,450 1,617 2,260 0,784 0,513 0,514 0,587 Set of ratios 05 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median Set of ratios 07 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median #55.'7C 55.'7D 55.'7B 55.'7A #75.'7C 75.'7D 75.'7B 75.'7A 0,894 1,288 1,387 1,884 0,603 0,525 0,538 0,566 #56.'7C 56.'7D 56.'7B 56.'7A 0,776 1,091 1,161 1,616 0,576 0,499 0,514 0,555 Set of ratios 09 Complete Linkage K Means Distrib. Mean Median Distrib. Mean Median P/FCFF 0,873 1,488 1,665 2,342 #95.'7C 95.'7D 95.'7B 95.'7A 0,767 1,070 1,143 1,603 0,581 0,512 0,526 0,571 #96.'7C 96.'7D 96.'7B 96.'7A 0,769 1,068 1,128 1,554 0,557 0,501 0,507 0,557 39 0,773 1,129 1,212 1,712 0,622 0,548 0,553 0,558 #76.'7C 76.'7D 76.'7B 76.'7A 0,775 1,133 1,224 1,698 0,624 0,544 0,541 0,555 40 Editorial Board ([email protected]) Download available at: also in http://wps.fep.up.pt/wplist.php http://ideas.repec.org/PaperSeries.html
© Copyright 2026 Paperzz