Name: ________________________ Class: ___________________ Date: __________ ID: A Module 12 Practice Quiz Matching Match each vocabulary term with its definition. a. adjacent arcs e. b. arc f. c. arc length g. d. congruent arcs h. segment of a circle major arc intercepted arc semicircle ____ 1. a region inside a circle bounded by a chord and an arc ____ 2. two arcs that are in the same or congruent circles and have the same measure ____ 3. two arcs of the same circle that intersect at exactly one point ____ 4. an arc of a circle whose points are on or in the exterior of a central angle ____ 5. an unbroken part of a circle consisting of two points on the circle called the endpoints and all the points of the circle between them Match each vocabulary term with its definition. a. chord e. b. arc f. c. point of tangency g. d. secant h. tangent of a circle interior of a circle common tangent exterior of a circle ____ 6. a line that is in the same plane as a circle and intersects the circle at exactly one point ____ 7. a line that intersects a circle at two points ____ 8. a line that is tangent to two circles Match each vocabulary term with its definition. a. subtend e. b. tangent circles f. c. arc length g. d. congruent circles ____ sector of a circle inscribed angle intercepted arc 9. a region inside a circle bounded by two radii of the circle and their intercepted arc Match each vocabulary term with its definition. a. interior of a circle e. b. tangent circles f. c. concentric circles g. d. congruent circles h. ____ 10. an angle whose vertex is the center of a circle 1 central angle subtend tangent circles minor arc Name: ________________________ ID: A Multiple Choice Identify the choice that best completes the statement or answers the question. ____ 1. Find BD . a. b. ____ c. d. BD = 5 BD = 10 2. Find the arc length of an arc with measure 130° in a circle with radius 2 in. Round to the nearest tenth. a. b. ____ BD = 16 BD = 8 4.5 in 2.3 in c. d. 10.2 in 0.5 in 3. WX YZ . Find mWX . a. mWX = 17 c. mWX = 1 b. mWX = 5 d. mWX = 23 2 Name: ________________________ ____ 4. Convert 25 to radians. a. 25 b. ____ c. d. 5 36 5 72 5. Find the point of tangency and write the equation of the tangent line at this point. a. b. c. d. ____ 25 ID: A point of tangency: B(3, point of tangency: B(3, point of tangency: C(2, point of tangency: A(0, 0) ; equation of the tangent line: x 3 0) ; equation of the tangent line: y 3 0); equation of the tangent line: x y 3 0) ; equation of the tangent line: y x 3 6. Find the area of sector POM. Give your answer in terms of . a. b. 2.4 cm 2 0.6 cm 2 c. d. 3 864 cm 2 1.2 cm 2 Name: ________________________ ID: A ____ 7. Carlos has a collection of old vinyl records. To play some of the records, the turntable rotates through an angle of 3 radians in 1 second. How many revolutions does the record make in one minute? 2 c. 78 revolutions per minute a. 33 1 revolutions per minute 3 b. 45 revolutions per minute d. 16 2 revolutions per minute 3 ____ 8. Jenny’s birthday cake is circular and has a 30 cm radius. Her slice creates an arc with a central angle of 120. What is the area of Jenny’s slice of cake? Give your answer in terms of . c. 150 cm 2 a. 300 cm 2 b. 10 cm 2 d. 3600 cm 2 ____ 9. Convert 17 from radians to degrees. 10 a. 366° b. 306° c. d. 4 279° 252° ID: A Module 12 Practice Quiz Answer Section MATCHING 1. ANS: REF: DOK: 2. ANS: REF: TOP: 3. ANS: REF: DOK: 4. ANS: DOK: 5. ANS: REF: TOP: E PTS: 1 DIF: 1d28c4ae-4683-11df-9c7d-001185f0d2ea DOK 1 D PTS: 1 DIF: 1d266252-4683-11df-9c7d-001185f0d2ea 12-2 Arcs and Chords DOK: A PTS: 1 DIF: 1d242706-4683-11df-9c7d-001185f0d2ea DOK 1 F PTS: 1 DIF: DOK 1 B PTS: 1 DIF: 1d1f3b3e-4683-11df-9c7d-001185f0d2ea 12-2 Arcs and Chords DOK: 6. ANS: REF: TOP: 7. ANS: REF: TOP: 8. ANS: REF: DOK: E PTS: 1 DIF: 1d09ed12-4683-11df-9c7d-001185f0d2ea 12-1 Lines That Intersect Circles DOK: D PTS: 1 DIF: 1d0eb1ca-4683-11df-9c7d-001185f0d2ea 12-1 Lines That Intersect Circles DOK: G PTS: 1 DIF: 1d10ed16-4683-11df-9c7d-001185f0d2ea DOK 1 1 TOP: 12-3 Sector Area and Arc Length 1 LOC: MTH.C.11.03.05.03.03.001 DOK 1 1 TOP: 12-2 Arcs and Chords 1 1 LOC: MTH.C.11.03.05.03.001 DOK 1 1 LOC: MTH.C.11.03.05.05.001 DOK 1 1 LOC: MTH.C.11.03.05.06.001 DOK 1 1 9. ANS: E PTS: 1 DIF: 1 REF: 1d2febc2-4683-11df-9c7d-001185f0d2ea TOP: 12-3 Sector Area and Arc Length DOK: DOK 1 10. ANS: E PTS: 1 DIF: 1 REF: 1d1a7686-4683-11df-9c7d-001185f0d2ea TOP: 12-2 Arcs and Chords DOK: DOK 1 1 TOP: 12-2 Arcs and Chords TOP: 12-1 Lines That Intersect Circles LOC: MTH.C.11.03.05.07.001 LOC: MTH.C.11.03.05.09.01.001 ID: A MULTIPLE CHOICE 1. ANS: A Step 1 Draw radius AD . AD 10 AD AF Step 2 Use the Pythagorean Theorem. Pythagorean Theorem ( AD ) 2 ( AC ) 2 ( CD ) 2 2 Substitute 10 for AD and 6 for AC. (10) 2 (6) 2 ( CD ) ( CD ) 2 64 CD 8 Subtract (6) 2 from both sides. Take the square root of both sides. Step 3 Find BD . BD 2(8) 16 AF BD , AF bisects BD . Feedback Correct! Multiply this answer by 2. Use the Pythagorean Theorem with a hypotenuse of length 10 and one leg of length 6 to find the length of CD. Use the Pythagorean Theorem with a hypotenuse of length 10 and one leg of length 6 to find the length of CD. A B C D PTS: OBJ: LOC: KEY: 2. ANS: 1 DIF: 2 REF: 12-2.4 Using Radii and Chords STA: MTH.C.11.03.05.04.004 TOP: circle | radius | chord DOK: A Ê m ˜ˆ˜ ˜˜ L 2r ÁÁÁÁ 360 Formula for arc length ¯ Ë ˆ˜˜ Ê ˜˜ 2(2) ÁÁÁÁ 130 Substitute. 360 ¯ Ë 13 9 in 4.5 in 1cd7db86-4683-11df-9c7d-001185f0d2ea MCC9-12.G.SRT.8 12-2 Arcs and Chords DOK 2 Simplify. Feedback A B C D Correct! Use the formula for finding the distance along an arc. The arc length is equal to 2 times pi times the radius times the measure of the arc divided by 360 degrees. Use the formula for finding the distance along an arc. PTS: OBJ: LOC: KEY: 1 DIF: 2 12-3.4 Finding Arc Length MTH.C.12.11.02.006 arc length DOK: DOK 2 REF: 1cdedb8a-4683-11df-9c7d-001185f0d2ea STA: MCC9-12.G.C.5 TOP: 12-3 Sector Area and Arc Length 2 ID: A 3. ANS: A mWX mYZ 3x 2 4x 3 2 x3 5x mWX 3(5) 2 17 Congruent chords have congruent arcs. Substitute the given measures. Subtract 3x from both sides. Add 3 to both sides. Substitute 5 for x and simplify. Feedback A B C D Correct! This is x. Now solve for the arc length. Set the two expressions equal to each other and solve. Congruent chords have congruent arcs. PTS: OBJ: LOC: KEY: 4. ANS: 1 DIF: 2 REF: 1cd7b476-4683-11df-9c7d-001185f0d2ea 12-2.3 Applying Congruent Angles, Arcs, and Chords STA: MCC9-12.A.CED.1 MTH.C.11.03.05.03.02.006 | MTH.C.11.03.05.04.005 TOP: 12-2 Arcs and Chords chord | arc measure DOK: DOK 2 C Feedback A B C D One radian corresponds to 180 degrees. One radian corresponds to 180 degrees. Correct! One radian corresponds to 180 degrees. PTS: 1 DIF: 2 REF: 9167f1fb-6ab2-11e0-9c90-001185f0d2ea OBJ: 12-3-Ext.1 Converting Degrees to Radians STA: MCC9-12.G.C.5 TOP: 12-3-Ext Measuring Angles in Radians KEY: convert | degrees | radians DOK: DOK 2 5. ANS: A A tangent is a line in the same plane as a circle that intersects it at exactly one point. The point of tangency is the point where the tangent and a circle intersect. The point of tangency on ñA or ñC is B(3, 0) . The tangent line is vertical and passes through point B(3, 0) . Its equation is x 3. Feedback A B C D Correct! The tangent line is a line in the same plane as a circle that intersects it at exactly one point. Find the point where the tangent and a circle intersect. Find the point where the tangent and a circle intersect. PTS: OBJ: LOC: KEY: 1 DIF: 2 REF: 1cce2b06-4683-11df-9c7d-001185f0d2ea 12-1.2 Identifying Tangents of Circles STA: MCC9-12.G.C.4 MTH.C.11.03.05.05.002 | MTH.C.11.03.05.05.003 TOP: 12-1 Lines That Intersect Circles point of tangency | circles DOK: DOK 2 3 ID: A 6. ANS: A Ê m ˆ˜˜ ˜˜ A r 2 ÁÁÁÁ 360 ¯ Ë ÊÁ 54 ˜ˆ˜ 2Á = (4) ÁÁ 360 ˜˜ ¯ Ë 2 = 2.4 cm Formula for area of a sector Substitute 4 for r and 54 for m. Simplify. Feedback A B C D Correct! Square the radius. Divide by 360 degrees. Use the formula for finding the area of a sector. PTS: OBJ: LOC: KEY: 7. ANS: 1 DIF: 1 REF: 1cda16d2-4683-11df-9c7d-001185f0d2ea 12-3.1 Finding the Area of a Sector STA: MCC9-12.G.C.5 MTH.C.12.12.02.010 TOP: 12-3 Sector Area and Arc Length circle | sector area DOK: DOK 2 B Feedback A B C D How many revolutions are there in one revolution? Correct! How many revolutions are there in one revolution? How many revolutions are there in one revolution? PTS: 1 DIF: 3 REF: 916a5456-6ab2-11e0-9c90-001185f0d2ea STA: MCC9-12.G.C.5 TOP: 12-3-Ext Measuring Angles in Radians KEY: revolutions per minute | angular speed | radians DOK: DOK 3 4 ID: A 8. ANS: A Ê m ˆ˜˜ ˜˜ A r 2 ÁÁÁÁ 360 ¯ Ë ÊÁ 120 ˜ˆ˜ 2Á (30) ÁÁ 360 ˜˜ ¯ Ë 300 cm 2 Formula for area of a sector Substitute the given values. Simplify. Feedback A B C D Correct! Use the formula for finding the area of a sector. Use the formula for finding the area of a sector. The area of a sector is equal to pi times radius squared times the measure of the arc divided by 360 degrees. PTS: OBJ: LOC: KEY: 9. ANS: 1 DIF: 2 12-3.2 Application MTH.C.12.12.02.010 circle | sector area B REF: STA: TOP: DOK: 1cdc792e-4683-11df-9c7d-001185f0d2ea MCC9-12.G.C.5 12-3 Sector Area and Arc Length DOK 2 Feedback A B C D One radian corresponds to 180 degrees. Correct! One radian corresponds to 180 degrees. One radian corresponds to 180 degrees. PTS: OBJ: TOP: DOK: 1 DIF: 1 REF: 9168190b-6ab2-11e0-9c90-001185f0d2ea 12-3-Ext.2 Converting Radians to Degrees STA: MCC9-12.G.C.5 12-3-Ext Measuring Angles in Radians KEY: convert | degrees | radians DOK 2 5 Module 12 Practice Quiz [Answer Strip] C _____ 4. ID: A B _____ 7. A _____ 1. A _____ 5. A _____ 8. E _____ 1. D _____ 2. B _____ 9. A _____ 3. F _____ 4. B _____ 5. A _____ 2. E _____ 6. D _____ 7. A _____ 6. G _____ 8. A _____ 3. E _____ 9. E 10. _____
© Copyright 2026 Paperzz