1. Consider the flow of air over a small plate that is 5cm long in the flow direction and 1cm wide. The free stream conditions correspond to standard sea level and the flow velocity is 120 m s . Assuming laminar flow, calculate the boundary layer thickness at the trailing edge and the drag 2 kg force on the plate. (υair = 1, 5 · 10−5 ms , % = 1, 2 · m 3) Solution: Boundary layer thickness for laminar flows using Blasius eq. r 4, 91x υ·x δ ≈ 4, 91 =√ u0 Rex u∞ x Rex = υs 2 1, 5 · 10−5 ms · 0, 05m ≈ 3, 88 · 10−4 m ≈ 0, 04cm 120 m s δ ≈ 4, 91 · Drag force (blasius, laminar flow) with ReL = 0,664 √ Rex local drag coefficient Cf = global (integral) drag coefficient Cd = Cw = Fd = = τw %u2 0 2 1,328 √ ReL u0 ·L υ depend on position on the plate (depend on length L of plate) 1 · % · u20 · A · cd 2 cd = r 1, 328 120 m s ·0,05m 1,5·10−5 = 2, 099 · 10−3 m2 s 1 kg m 2 · 1, 2 3 · 120 · (1m · 0, 05m) · 2, 099 · 10−3 2 m s = 0, 907N = 2 − sides of plate: Fd = 2 · 0, 907N= 1, 814N 2. For the case of exercise 1, compare the local shear stress at 1cm and 5cm from the leading edge. Solution: wall shear stress for laminar flow τw = 0, 332(Rex )−0,5 · %u20 τw (x = 0, 01m) = 0, 332 · 80000−0,5 · 1, 2 kg m 2 · 120 m3 s ≈ 20, 28Pa τw (x = 0, 05m) = 0, 332 · 400000−0,5 · 1, 2 kg m 2 · 120 3 m s ≈ 9, 07Pa 3. Assuming same parameters as in exercise 1, calculate the boundary layer thickness at the trailing edge and the drag force on the plate but assuming now that the flow is fully turbulent from the leading edge. Solution: Boundary layer thickness for turbulent flow 1/7 υ 6/7 δ = 0, 217x u0 ! 1/7 2 −5 m 1, 5 · 10 6/7 s δ = 0, 217 · (0, 05m) · = 120 m s Schlichting; 1/7 power law profile δ= 0, 382x 1/5 R ex = 0, 382 · 0, 05m = 1, 44 · 10−3 m = 14, 4cm 4000000,2 Drag force: fully turbulent flow (estimation) 1 (a) cd = (b) cd = (c) cd = 0,074 5 · 105 ≤ ReL < 107 1/5 ReL 0,455 ReL ≥ 106 turbulent (logReL )2,58 0,455 1700 transitional with Rexcr (logReL )2,58 − ReL = 5 × 105 Fd = 1/2 · % · u20 · A · cd kg m 2 (a) Fd = 1/2 · 1, 2 m · (0, 05m2 ) · 5, 608 · 10−3 = 2, 42N 3 · 120 s 2 − sides of plate: Fd = 2 · 2, 42N = 4, 84N kg m 2 · (0, 05m2 ) · 5, 33 · 10−3 = 2, 30N (b) Fd = 1/2 · 1, 2 m 3 · 120 s 2 − sides of plate: Fd = 2 · 2, 3N = 4, 6N 4. The boundary layer thickness δ and wall shear stress τw along a turbulent flat plate is described by u0 x 0, 382x , Rex = δ= 1/5 υ Rex r τw 0, 074 τw cd = %u2 , cd = 1/5 , uτ = 0 % ReL 2 1 uτ u+ = lmy + + c y+ = y κ ν m2 kg ) (u0 = 10m/s, %air = 1, 2 3 , υair = 1, 5 · 10−5 m s (a) calculate the thickness of the viscous sublayer (y + ≤ 5) of the transition region (y + ≤ 30) and of the logarithmic layer at the distance x = 1m from the leading edge of the plate. Solution: 10m/s · 1m = 666666, 6 1, 5 · 10−5 m2 /s 0, 382 · 1m δ= = 0, 0261m (666666, 6)1/5 0, 074 kg 2 = 0, 303Pa τw = %u20 · 1/2 · cd = 1, 2 3 · (10m/s) · 0, 5 · m (666666, 6)0,2 s 0, 303Pa m uτ = = 0, 503 kg s 1, 2 m 3 υ y = y+ · uτ Rex = 2 1, 5 · 10−5 ms (y = 5) → y = 5 · = 1, 49 · 10−4 m 0, 503 m s + 2 1, 5 · 10−5 ms (y = 30) → y = 30 · = 8, 94 · 10−4 m 0, 503 m s + (b) u0 = 100m/s 100 m s · 1m Rex = 2 = 6666666, 6̄ 1, 5 · 10−5 ms 0, 382 · 1m δ= = 0, 0165m (6666666, 6̄)1/5 τw = 19, 17Pa s 19, 17Pa m uτ = = 3, 997 kg s 1, 2 m3 2 1, 5 · 15−5 ms (y = 5) → y = 5 · = 1, 876 · 10−5 m 3, 997 m s + 2 1, 5 · 10−5 ms (y = 30) → y = 30 · = 1, 125 · 10−4 m 3, 997 m s + (y + = 1) → y = 3, 75 · 10−6 m 2
© Copyright 2025 Paperzz