Name:________________________________ Module 1 Unit 2 Test 1.) What composition of transformations below will map triangle ABC to triangle A'B'C'? a.) Tv(Rl(ABC)) b.) rl(Tv(ABC)) c.) Rl(Tv(ABC)) d.) Tv(rl(ABC)) 2.) Which of the following transformations is an opposite isometry? a.) Rotation b.) Reflection c.) Translation d.) Dilation 3.) Which figure below has line symmetry? a.) b.) c.) d.) 4.) Which figure has rotational symmetry, and maps onto itself at 120o? a.) b.) c.) d.) 5.) Which method of proof can be used to show that the two triangles below are congruent? a.) SAS b.) AAS Given: AD bisects BE, <A≅<D Prove: ΔABC≅ΔDEC c.) ASA D B d.) None C E A 6.) Which method of proof can be used to show that the two triangles below are congruent? B a.) SSS b.) AAS c.) SAS d.) None Given: AB≅BC, BD≅BE Prove: ΔAEC≅ΔCDA D A E C 7.) Which method of triangle congruence criteria is enough to prove two triangles are congruent? a.) SideSideAngle b.) AngleSideSide c.) AngleAngleAngle d.) AngleAngleSide 8.) Which property is not true in isosceles triangles? a.) Two congruent sides b.) Two congruent base angles c.) The altitude, perpendicular bisector d.) The centroid, othocenter, circumcenter and median from the vertex are all the and Incenter are all the same point. same line 9.) Which statement below is false? a.) A square is a trapezoid b.) A rhombus is a parallelogram c.) A rectangle is a square c.) A parallelogram is a quadrilateral 10.) Use the diagram of ΔMNO where X, Y, and Z are midpoints of the sides. If YX = x – 1, and MO = 3x – 7, find the length of MZ. a.) 5 b.) 4 c.) 8 d.) 2 11.) Use the diagram of ΔMNO where X, Y, and Z are midpoints of the sides. If m∠MON = 48° ,then what is the m∠MZX? a.) 48o b.) 132o c.) 312o d.) 42o 12.) Point G is the centroid of triangle ABC. If BG = 4x + 6 and DG = 3x, find the length of BD. a.) 9 b.) 18 c.) 27 d.) 6 13.) In the proof to the right, what reason will fit for step 3? a.) Vertical <'s are congruent b.) Partition c.) Reflexive d.) Substitution Given 14.) In the proof to the right, what reason will fit for step 4? ? ΔADB≅ΔADC a.) SAS≅SAS b.) HL≅HL c.) ASA≅ASA d.) AAS≅AAS 15.) What sequence of rigid motions will map triangle ABC onto triangle DEF? a.) Translation then rotation b.) Rotation then translation c.) Translation, then rotation, then reflection d.) Reflection only ? 16.) List 5 properties of a rectangle 1.)______________________________________________________________ 2.)______________________________________________________________ 3.)______________________________________________________________ 4.)______________________________________________________________ 5.)______________________________________________________________ 17.) Prove that the base angles of an isosceles trapezoid are congruent. B Given: ΔABC is isosceles with AB≅BC BD bisects <ABC a.) Fill in the prove statement. Prove: b.) Complete the proof: Statement Reason A D C 18.) : rBD(ABCD) : Ro,90(A'B'C'D') where O is the center of the square. (Answer must be written in function notation) 19.) Complete the following proof: C B Given: <BCA≅<DAC, <BAC≅<DCA Prove: ABCD is a parallelogram D A Statement 20.) Reason Given two triangles with SAS≅SAS, sketch the three phases of the sequence of rigid motions that will map the triangles on top of each other. 1st Transformation: 2nd Transformation: 3rd Transformation: _____________________ _____________________ _____________________ Original
© Copyright 2026 Paperzz