New Representations of Spherical Indicatricies of Bertrand Curves

Hindawi Publishing Corporation
Geometry
Volume 2015, Article ID 509058, 5 pages
http://dx.doi.org/10.1155/2015/509058
Research Article
New Representations of Spherical Indicatricies of Bertrand
Curves in Minkowski 3-Space
Esmail Aydemir and FJrat Yerlikaya
Department of Mathematics, Art and Science Faculty, Ondokuz Mayis University, Kurupelit campus, 55190 Samsun, Turkey
Correspondence should be addressed to FΔ±rat Yerlikaya; firat [email protected]
Received 26 September 2014; Accepted 24 December 2014
Academic Editor: Isaac Pesenson
Copyright © 2015 IΜ‡. Aydemir and F. Yerlikaya. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.
We obtained a new representation for timelike Bertrand curves and their Bertrand mate in 3-dimensional Minkowski space. By
using this representation, we expressed new representations of spherical indicatricies of Bertrand curves and computed their
curvatures and torsions. Furthermore in case the indicatricies of a Bertrand curve are slant helices, we investigated some new
characteristic features of these curves.
1. Introduction
In the early 1900s, Bertrand had worked on special curves,
which were then referred to by his name. He examined these
curves and their applications to both differential equations
in analytical mechanics and thermodynamics [1]. Bertrand
curve is defined as a particular curve, which shares its
principal normal vector with another special curve that called
Bertrand pair. Also, there is a linear relation between the curvature and the torsion. In three-dimensional euclidean space,
a helix is characterized as a curve whose tangent line makes
a constant angle with a fixed direction. Lancret expressed the
result, which describes helices, a curve is a helix if and only
if the ratio 𝜏/πœ… is constant in 1802, and Saint Venant proved
it in 1845. There are many highly interesting applications of
helices such as helical structures in fractal geometry, DNA
spirals, collagen triple helix and the helical ladder structures
in architecture [2–5]. Izumiya and Takeuchi defined Slant
helices. A Slant helix is a curve whose principal normal vector
makes a constant angle with a fixed direction [6].
In three-dimensional Minkowski space, curves are classified into three groups: spacelike, timelike, and lightlike. In
this paper, we examined timelike Bertrand curves and their
timelike Bertrand mate with a geometric point of view. We
obtained a new representation for timelike Bertrand curves
and their Bertrand mate in 3-dimensional Minkowski space.
By using this representation, we expressed new representations of spherical indicatricies of Bertrand curves and computed their curvatures and torsions. Furthermore, in case the
indicatricies of a Bertrand curve are slant helices, we investigated some new characteristic features of these curves.
3-dimensional Minkowski space R31 is the R3 vector space
endowed with Lorentzian inner product given by
⟨π‘₯, π‘¦βŸ© = βˆ’π‘₯1 𝑦1 + π‘₯2 𝑦2 + π‘₯3 𝑦3 ,
(1)
where π‘₯ = (π‘₯1 , π‘₯2 , π‘₯3 ) and 𝑦 = (𝑦1 , 𝑦2 , 𝑦3 ) ∈ R3 .
A vector is called a spacelike vector if ⟨π‘₯, π‘₯⟩ > 0, a
timelike vector if ⟨π‘₯, π‘₯⟩ < 0, and a lightlike vector if π‘₯ =ΜΈ 0 and
⟨π‘₯, π‘₯⟩ = 0. Likewise, an arbitrary curve 𝛼(𝑑) in R31 is addressed as spacelike, timelike, or null, if its velocity vectors 𝛼󸀠 (𝑑)
are respectively spacelike, timelike, or null, for every 𝑑 ∈ 𝐼 βŠ‚
R. For a vector π‘₯ ∈ R31 , the norm of π‘₯ is defined by
β€–π‘₯β€– = √|⟨π‘₯, π‘₯⟩|.
(2)
In addition, π‘₯ is called a unit vector if its norm is equal to 1.
The Lorentzian sphere and hyperbolic sphere of radius 1 in
3-dimensional Minkowski space are, respectively, given by
𝑆12 = {π‘₯ = (π‘₯1 , π‘₯2 , π‘₯3 ) ∈ R31 : ⟨π‘₯, π‘₯⟩ = 1} ,
𝐻12 = {π‘₯ = (π‘₯1 , π‘₯2 , π‘₯3 ) ∈ R31 : ⟨π‘₯, π‘₯⟩ = βˆ’1} .
(3)
2
Geometry
For any π‘₯ = (π‘₯1 , π‘₯2 , π‘₯3 ) and 𝑦 = (𝑦1 , 𝑦2 , 𝑦3 ) ∈ R31 , the
vectorial product of π‘₯ and 𝑦 is defined by
the tangent vector fields and the binormal vector fields are,
respectively, related by
(4)
𝑇 = cosh πœƒπ‘‡βˆ— βˆ’ sinh πœƒπ΅βˆ— ,
We denote the moving Frenet frame along the curve 𝛼
by {𝑇(𝑑), 𝑁(𝑑), 𝐡(𝑑)} where 𝑇, 𝑁, and 𝐡 are the tangent, the
principal normal and the binormal vector of the curve 𝛼,
respectively. Let 𝛼 be a unit speed timelike space curve with
curvature πœ…, torsion 𝜏 and Frenet vector fields of 𝛼 be {𝑇, 𝑁, 𝐡}
where 𝑇 is timelike and 𝑁, 𝐡 are spacelike vector fields. Then,
Frenet formulas are
𝐡 = βˆ’ sinh πœƒπ‘‡βˆ— + cosh πœƒπ΅βˆ—
for some functions πœƒ = πœƒ(𝑠). Furthermore, πœƒ is the angle
between the tangent vectors 𝑇 and π‘‡βˆ— . Similar relations can
be given as follows for the curvatures and torsions:
𝑇󸀠
0 πœ… 0
𝑇
[𝑁󸀠 ] = [πœ… 0 𝜏] [𝑁] .
σΈ€ 
[ 𝐡 ] [0 βˆ’πœ 0] [ 𝐡 ]
𝑑𝑠
𝑑𝑠
𝜏 = sinh πœƒ βˆ— πœ…βˆ— + cosh πœƒ βˆ— πœβˆ— ,
𝑑𝑠
𝑑𝑠
π‘₯ × π‘¦ = (π‘₯3 𝑦2 βˆ’ π‘₯2 𝑦3 , π‘₯3 𝑦1 βˆ’ π‘₯1 𝑦3 , π‘₯1 𝑦2 βˆ’ π‘₯2 𝑦1 ) .
(5)
For given any two vectors π‘₯, 𝑦 ∈ R31 , if π‘₯ and 𝑦 are positive
(negative) timelike vectors then there is a unique nonnegative
real number πœƒ such that
σ΅„© σ΅„©
⟨π‘₯, π‘¦βŸ© = β€–π‘₯β€– 󡄩󡄩󡄩𝑦󡄩󡄩󡄩 cosh πœƒ.
(6)
Moreover, this unique nonnegative real number πœƒ is called
The Lorentzian timelike angle between π‘₯ and 𝑦. If π‘₯ is a
spacelike vector and 𝑦 be a positive timelike vector then there
is a unique nonnegative real number πœƒ such that
σ΅„© σ΅„©
󡄨
󡄨󡄨
σ΅„¨σ΅„¨βŸ¨π‘₯, π‘¦βŸ©σ΅„¨σ΅„¨σ΅„¨ = β€–π‘₯β€– 󡄩󡄩󡄩𝑦󡄩󡄩󡄩 sinh πœƒ.
πœ… = cosh πœƒ
(7)
Therefore, this unique nonnegative real number πœƒ is called
The Lorentzian timelike angle between π‘₯ and 𝑦 (see [7]).
A unit speed curve 𝛼 is called a slant helix if there exists a
constant vector field π‘ˆ in R31 such that βŸ¨π‘(𝑠), π‘ˆβŸ© is constant
[8].
(𝜏2 βˆ’
3/2
πœ…2 )
𝜏 σΈ€ 
( )
πœ…
(8)
𝜏 σΈ€ 
( )
πœ…
(9)
or
πœ…2
(πœ…2 βˆ’
3/2
𝜏2 )
is constant everywhere 𝜏2 βˆ’ πœ…2 does not vanish [8].
2. New Representations of
Timelike Bertrand Curves
Let 𝛼 be a unit speed timelike curve. If there exists a timelike
curve π›Όβˆ— whose principal normal vector coincides with that of
𝛼, then 𝛼 is called a timelike Bertrand curve. The pair (𝛼, π›Όβˆ— )
is said to be a timelike Bertrand pair. Let 𝛼 be a timelike
Bertrand curve and let π›Όβˆ— be a timelike Bertrand mate of 𝛼
and we denote the moving Frenet frame along the curve 𝛼
by {𝑇, 𝑁, 𝐡} and along the curve π›Όβˆ— by {π‘‡βˆ— , π‘βˆ— , π΅βˆ— }. Thus,
𝑑𝑠
𝑑𝑠 βˆ—
πœ… + sinh πœƒ βˆ— πœβˆ— ,
π‘‘π‘ βˆ—
𝑑𝑠
(11)
where πœ…, πœ…βˆ— and 𝜏, πœβˆ— are the curvatures and torsions of 𝛼 and
π›Όβˆ— , respectively.
Furthermore, let (𝛼, π›Όβˆ— ) be a nonhelical timelike Bertrand
pair; 𝑠 and π‘ βˆ— are arclength parameters of 𝛼 and π›Όβˆ— , respectively. Hence, 𝛼(𝑠) = π›Όβˆ— (π‘ βˆ— ) βˆ’ πœ†πœ€π‘βˆ— and π›Όβˆ— (π‘ βˆ— ) = 𝛼(𝑠) + πœ†π‘.
Let 𝛼 be a timelike Bertrand curve with a timelike Bertrand
mate curve π›Όβˆ— ; then,
πœ†=
πœ€π‘”βˆ—
,
πœ…βˆ— (π‘”βˆ— βˆ’ π‘“βˆ— )
(12)
where
π‘“βˆ— =
πœβˆ—
,
πœ…βˆ—
π‘”βˆ— =
πœβˆ—σΈ€ 
πœ…βˆ—σΈ€ 
(13)
and πœ€ = ±1.
Moreover, we can give the relation between the arclength
parameters 𝑠 and π‘ βˆ— of 𝛼 and π›Όβˆ— , respectively, as follows:
Theorem 1. Let 𝛼 be unit speed timelike curve in R31 . Then, 𝛼
is a slant helix if and only if either one of the next two functions
πœ…2
(10)
𝑠=∫
π‘“βˆ— √1 βˆ’ π‘”βˆ—2
π‘”βˆ— βˆ’ 𝑓 βˆ—
π‘‘π‘ βˆ— .
(14)
Theorem 2. Let 𝛼 be a timelike Bertrand curve and let π›Όβˆ— be a
nonhelical timelike Bertrand mate of 𝛼. We denote the moving
Frenet frame along the curve 𝛼 by {𝑇, 𝑁, 𝐡} and along the curve
π›Όβˆ— by {π‘‡βˆ— , π‘βˆ— , π΅βˆ— }. Then,
𝑇=
βˆ’1
√1 βˆ’
π‘”βˆ—2
{π‘‡βˆ— + π‘”βˆ— π΅βˆ— } ,
𝑁 = πœ€π‘βˆ— ,
𝐡=
πœ…=
βˆ’πœ€
√1 βˆ’
π‘”βˆ—2
{π‘”βˆ— π‘‡βˆ— + π΅βˆ— } ,
βˆ’πœ€ (1 βˆ’ π‘”βˆ— π‘“βˆ— ) (π‘”βˆ— βˆ’ π‘“βˆ— )
,
π‘“βˆ— (1 βˆ’ π‘”βˆ—2 )
2
𝜏=
πœ…βˆ— (π‘”βˆ— βˆ’ π‘“βˆ— )
,
π‘“βˆ— (1 βˆ’ π‘”βˆ—2 )
(15)
where πœ€±1, |πœ…βˆ—σΈ€  | > |πœβˆ—σΈ€  |, and πœ…, πœ…βˆ— and 𝜏, πœβˆ— are the curvatures
and torsions of 𝛼 and π›Όβˆ— , respectively.
Geometry
3
The geodesic curvature of the principal image of the
principal normal indicatrix of 𝛼 is
𝜎=
πœ€πœ…βˆ—σΈ€  (π‘”βˆ— βˆ’ π‘“βˆ— )
3/2
πœ…βˆ—2 (1 βˆ’ π‘“βˆ—2 )
.
(16)
Also, if we compute the derivative (πœβˆ— /πœ…βˆ— )σΈ€  and put it in
3/2
equation πœŽβˆ— = (πœ…βˆ—2 /(πœ…βˆ—2 βˆ’ πœβˆ—2 ) )(πœβˆ— /πœ…βˆ— )σΈ€  , we obtain
πœŽβˆ— =
πœ…βˆ—σΈ€  (π‘”βˆ— βˆ’ π‘“βˆ— )
3/2
πœ…βˆ—2 (1 βˆ’ π‘“βˆ—2 )
.
(17)
there exist unit tangent vectors along the curve 𝛼. These
unit tangent vectors generate a curve 𝛼𝑑 = 𝑇 on the unit
Lorentzian sphere (or hyperbolic sphere). The curve 𝛼𝑑 is
called the Tangent indicatrix of the curve 𝛼. Similarly, we can
define the principal normal and binormal indicatrix of the
curve 𝛼.
3.1. The Tangent Indicatrix of Timelike Bertrand Curves. If we
take a nonhelical timelike Bertnard pair (𝛼, π›Όβˆ— ) in the above
definition, we get the tangent indicatrix of a timelike Bertrand
curve such that
𝛼𝑑 =
βˆ—
So we have 𝜎 = 𝜎/πœ€.
Now, we can give the following result.
Corollary 3. Let 𝛼 be a timelike Bertrand curve and π›Όβˆ— be a
nonhelical timelike Bertrand mate of 𝛼. Bertrand curve 𝛼 is a
slant helix if and only if its mate curve π›Όβˆ— is a slant helix.
Theorem 4. Let 𝛼 be a timelike Bertrand curve and π›Όβˆ— be a
nonhelical timelike Bertrand mate of 𝛼 and |πœ…βˆ—σΈ€  | > |πœβˆ—σΈ€  |. Then,
π‘”βˆ— is a constant.
Proof. If we differentiate the equation 𝛼(𝑠) = π›Όβˆ— (π‘ βˆ— ) βˆ’ πœ†πœ€π‘βˆ—
with respect to π‘ βˆ— , we obtain
π‘‘π‘ βˆ—
π‘‘π‘ βˆ—
𝛼 (𝑠) =
(1 βˆ’ πœ†πœ€πœ…βˆ— ) π‘‡βˆ— βˆ’
πœ†πœ€πœβˆ— π΅βˆ— .
𝑑𝑠
𝑑𝑠
σΈ€ 
(18)
By substituting πœ† = πœ€π‘”βˆ— /πœ…βˆ— (π‘”βˆ— βˆ’ π‘“βˆ— ) and 𝑑𝑠/π‘‘π‘ βˆ— =
𝑝1 =
1
√1 βˆ’
π‘”βˆ—2
,
𝑝2 =
𝑔
√1 βˆ’ π‘”βˆ—2
,
𝑇𝑑 = βˆ’ π‘βˆ— ,
𝑁𝑑 =
βˆ’1
βˆ— βˆ—
(19)
1
√1 βˆ’ π‘”βˆ—2
π‘‡βˆ— +
π‘”βˆ—
√1 βˆ’ π‘”βˆ—2
𝐡𝑑 =
βˆšπ‘“βˆ—2 βˆ’ 1
then, if we differentiate the last equation again with respect to
π‘ βˆ— , we get
𝛼󸀠󸀠 (𝑠) =
𝑠𝑑 = ∫
βˆ’1
{π‘‡βˆ— + π‘“βˆ— π΅βˆ— } ,
βˆ—
{𝑓 𝑇 + 𝐡 } .
πœ…βˆ— (1 βˆ’ π‘“βˆ— π‘”βˆ— )
√1 βˆ’
π‘”βˆ—2
π‘‘π‘ βˆ— ,
(24)
πœ…βˆ— (1 βˆ’ π‘“βˆ— π‘”βˆ— ) (π‘”βˆ— βˆ’ π‘“βˆ— )
𝑑𝑠.
π‘“βˆ— (1 βˆ’ π‘”βˆ—2 )
(25)
Theorem 7. Let 𝛼 be a timelike Bertrand curve and let π›Όβˆ— be a
nonhelical timelike Bertrand mate of 𝛼, |πœβˆ— | > πœ…βˆ— and |πœ…βˆ—σΈ€  | >
|πœβˆ—σΈ€  |. Thus, curvature and torsion of the tangent indicatrix 𝛼𝑑
of the timelike Bertrand curve are
πœ…π‘‘ =
Since 𝛼󸀠󸀠 , π‘‡βˆ— , and π΅βˆ— are linear independent, 𝑝1σΈ€  = 0 and
𝑝2σΈ€  = 0. Thus, 𝑝1 and 𝑝2 are constants. Therefore, π‘”βˆ— is a
constant.
Definition 5. Let 𝛼 be a unit speed regular curve and let
𝑇, 𝑁, and 𝐡 be Frenet vectors in Minkowski 3-space. Thus,
βˆšπ‘“βˆ—2
where |πœβˆ— | > πœ…βˆ— and |πœ…βˆ—σΈ€  | > |πœβˆ—σΈ€  |. With a similar way, we can
express following relation between the arclength parameters
𝑠𝑑 and 𝑠 of 𝛼𝑑 and 𝛼, respectively:
𝑑𝛼󸀠 (𝑠)
= βˆ’π‘1σΈ€  π‘‡βˆ— βˆ’ {𝑝1 πœ…βˆ— + 𝑝2 πœβˆ— } π‘βˆ— + 𝑝2σΈ€  π΅βˆ— .
π‘‘π‘ βˆ—
(21)
3. New Representations of Spherical Indicatrix
of Timelike Bertrand Curves
βˆ’1
From (22), we know 𝛼𝑑 = 𝑇 = (βˆ’1/√1 βˆ’ π‘”βˆ—2 ){π‘‡βˆ— +
π‘”βˆ— π΅βˆ— }. If we differentiate this equation with respect to π‘ βˆ— and
reorganize, we have
π΅βˆ— = βˆ’π‘1 π‘‡βˆ— + 𝑝2 π΅βˆ— ;
(20)
(22)
(23)
𝑠𝑑 = ∫
we can write
𝛼󸀠 (𝑠) = βˆ’
√1 βˆ’ π‘”βˆ—2
{π‘‡βˆ— + π‘”βˆ— π΅βˆ— } .
Theorem 6. Let 𝛼 be a timelike Bertrand curve and |πœβˆ— | >
πœ…βˆ— . If the Frenet frame of the tangent indicatrix 𝛼𝑑 = 𝑇 of the
timelike Bertrand curve is {𝑇𝑑 , 𝑁𝑑 , 𝐡𝑑 } then
π‘“βˆ— √1 βˆ’ π‘”βˆ—2 /(π‘”βˆ— βˆ’ π‘“βˆ— ) in the equation and choosing
βˆ—
βˆ’1
πœπ‘‘ =
βˆšπ‘“βˆ—2 βˆ’ 1√1 βˆ’ π‘”βˆ—2
(1 βˆ’ π‘“βˆ— π‘”βˆ— )
(26)
,
βˆ’πœ…βˆ—σΈ€  √1 βˆ’ π‘”βˆ—2 (π‘”βˆ— βˆ’ π‘“βˆ— )
πœ…βˆ—2 (1 βˆ’ π‘“βˆ— π‘”βˆ— ) (π‘“βˆ—2 βˆ’ 1)
,
(27)
respectively.
Corollary 8. Let (𝛼, π›Όβˆ— ) be a nonplanar and nonhelical
timelike Bertrand pair in R31 . Thus, Bertrand curve is a slant
helix if and only if the tangent indicatrix of the Bertrand curve
is a helix.
4
Geometry
Theorem 9. Let 𝛼 be a timelike Bertrand curve and let π›Όβˆ— be
a nonhelical timelike Bertrand mate of 𝛼. Then, the geodesic
curvature of the principal image of the principal normal
indicatrix of 𝛼𝑑 is
πœŽπ‘‘ =
βˆ—3(π‘“βˆ—2 βˆ’1)3/2 (π‘”βˆ— βˆ’π‘“βˆ— )(1βˆ’π‘“βˆ— π‘”βˆ— ){πœ…βˆ—σΈ€ σΈ€  πœ…βˆ— (π‘“βˆ—2 βˆ’1)+3πœ…βˆ—σΈ€ 2 (1βˆ’π‘“βˆ— π‘”βˆ— )}
πœ…
2 3/2
3
√1 βˆ’ π‘”βˆ—2 {πœ…βˆ—4 (π‘“βˆ—2 βˆ’ 1) βˆ’ πœ…βˆ—σΈ€ 2 (π‘”βˆ— βˆ’ π‘“βˆ— ) }
Furthermore, the curvature and the torsion of the principal normal indicatrix 𝛼𝑛 = 𝑁 of the timelike Bertrand curve
are
πœ…π‘› =
βˆ—
𝑑𝑠
,
𝑑𝑠𝑑
(28)
πœπ‘› =
𝜌
πœ…βˆ—2 (π‘“βˆ—2 βˆ’ 1)
3/2
,
πœ€ (π‘”βˆ— βˆ’ π‘“βˆ— )
𝜌2
σΈ€ 
βˆ—σΈ€ 
βˆ—σΈ€ 
βˆ—
Corollary 10. Let 𝛼 be a timelike Bertrand curve and let π›Όβˆ—
be a nonhelical timelike Bertrand mate of 𝛼. Then, the tangent
indicatrix of the timelike Bertrand curve is a helix if and only if
πœ… πœ… (𝑓
βˆ—2
βˆ—2
βˆ— βˆ—
βˆ’ 1) + 3πœ… (1 + 𝑓 𝑔 ) = 0
(29)
is satisfied.
3.2. The Principal Normal Indicatrix of Timelike Bertrand
Curves. It is known that the principal normal indicatrix of a
timelike Bertrand curve is
𝛼𝑛 = πœ€π‘βˆ— .
(30)
Theorem 11. Let 𝛼 be a timelike Bertrand curve and |πœβˆ— | >
πœ…βˆ— . If the Frenet frame of the principal normal indicatrix of the
timelike Bertrand curve is {𝑇𝑛 , 𝑁𝑛 , 𝐡𝑛 } then
𝑇𝑛 =
𝑁𝑛 =
πœ€
βˆšπ‘“βˆ—2 βˆ’ 1
{π‘‡βˆ— + π‘“βˆ— π΅βˆ— } ,
βˆ’πœ€
πœŒβˆšπ‘“βˆ—2
βˆ’1
{π‘“βˆ— πœ…βˆ—σΈ€  (π‘”βˆ— βˆ’ π‘“βˆ— ) π‘‡βˆ—
(31)
+ πœ…βˆ—σΈ€  (π‘”βˆ— βˆ’ π‘“βˆ— ) π΅βˆ— } ,
βˆ’1
{βˆ’π‘“βˆ— πœ…βˆ—2 (π‘“βˆ—2 βˆ’ 1) π‘‡βˆ— + πœ…βˆ—σΈ€  (π‘”βˆ— βˆ’ π‘“βˆ— ) π‘βˆ—
𝜌
πœ…βˆ—σΈ€ σΈ€  πœ…βˆ— (π‘“βˆ—2 βˆ’ 1) + 3πœ…βˆ—2 (1 βˆ’ π‘”βˆ— π‘“βˆ— ) = 0
(35)
is satisfied.
3.3. The Binormal Indicatrix of Timelike Bertrand Curves. It
is known that the binormal indicatrix of a timelike Bertrand
curve is
𝛼𝑏 =
𝐡𝑏 =
𝑠𝑏 = ∫
3
where 𝜌 = √|πœ…βˆ—4 (π‘“βˆ—2 βˆ’ 1) βˆ’ πœ…βˆ—σΈ€ 2 (π‘”βˆ— βˆ’ π‘“βˆ— )2 |.
If 𝛼 is a timelike Bertrand curve and π›Όβˆ— is a nonhelical
timelike Bertrand mate of 𝛼, |πœβˆ— | > πœ…βˆ— and |πœ…βˆ—σΈ€  | > |πœβˆ—σΈ€  |, then
𝑠𝑛 = ∫ πœ…βˆ— βˆšπ‘“βˆ—2 βˆ’ 1 π‘‘π‘ βˆ— ,
π‘“βˆ— √1 βˆ’ π‘”βˆ—2
Theorem 12. Let 𝛼 be a timelike Bertrand curve and let π›Όβˆ— be
a nonhelical timelike Bertrand mate of 𝛼. Then, the principal
normal indicatrix of the timelike Bertrand curve is a helix if
and only if
βˆ’πœ€
√1 βˆ’
π‘”βˆ—2
{π‘”βˆ— π‘‡βˆ— + π΅βˆ— } .
(36)
πœ€
βˆšπ‘“βˆ—2 βˆ’ 1
𝑁𝑏 =
βˆ’πœ€
βˆšπ‘“βˆ—2
βˆ’1
{π‘‡βˆ— + π‘“βˆ— π΅βˆ— } ,
(37)
{π‘“βˆ— π‘‡βˆ— βˆ’ π΅βˆ— } .
Theorem 14. Let 𝛼 be a timelike Bertrand curve and let π›Όβˆ—
be a nonhelical timelike Bertrand mate of 𝛼, |πœβˆ— | > πœ…βˆ— , and
|πœ…βˆ—σΈ€  | > |πœβˆ—σΈ€  |. Then,
+ πœ…βˆ—2 (π‘“βˆ—2 βˆ’ 1) π΅βˆ— } ,
πœ…βˆ— βˆšπ‘“βˆ—2 βˆ’ 1 (π‘”βˆ— βˆ’ π‘“βˆ— )
3
respectively, where 𝜌 = √|πœ…βˆ—4 (π‘“βˆ—2 βˆ’ 1) βˆ’ πœ…βˆ—σΈ€ 2 (π‘”βˆ— βˆ’ π‘“βˆ— )2 |.
𝑇𝑏 = βˆ’ π‘βˆ— ,
2
𝑠𝑛 = ∫
σΈ€ 
Theorem 13. Let 𝛼 be a timelike Bertrand curve and |πœβˆ— | > πœ…βˆ— .
If the Frenet frame of the binormal indicatrix of the timelike
Bertrand curve is {𝑇𝑏 , 𝑁𝑏 , 𝐡𝑏 } then
+ πœ…βˆ—2 (π‘“βˆ—2 βˆ’ 1) π‘βˆ—
𝐡𝑛 =
σΈ€ σΈ€ 
β‹… {(3πœ…βˆ— 2 βˆ’ πœ…βˆ— πœ…βˆ— ) (1 βˆ’ π‘“βˆ—2 ) βˆ’ 3π‘“βˆ— πœ…βˆ— 2 (π‘”βˆ— βˆ’ π‘“βˆ— )} ,
(34)
βˆ—
where |πœ… | > |𝜏 | and |𝜏 | > πœ… .
βˆ—σΈ€ σΈ€  βˆ—
(33)
(32)
πœ€πœ…βˆ— (π‘”βˆ— βˆ’ π‘“βˆ— )
√1 βˆ’ π‘”βˆ—2
2
π‘‘π‘ βˆ— ,
𝑠𝑏 = ∫
πœ€πœ…βˆ— (π‘”βˆ— βˆ’ π‘“βˆ— )
𝑑𝑠.
π‘“βˆ— (1 βˆ’ π‘”βˆ—2 )
(38)
And the curvature and the torsion of the binormal indicatrix
𝛼𝑏 of the timelike Bertrand curve are
πœ…π‘ =
√1 βˆ’ π‘”βˆ—2 βˆšπ‘“βˆ—2 βˆ’ 1
𝑑𝑠.
respectively.
(π‘”βˆ— βˆ’ π‘“βˆ— )
,
πœπ‘ =
πœ…βˆ—σΈ€  √1 βˆ’ π‘”βˆ—2
πœ…βˆ—2 (π‘“βˆ—2 βˆ’ 1)
(39)
Geometry
5
As a result of this theorem, we have the following.
Corollary 15. A Bertrand curve is a slant helix if and only if
the binormal indicatrix of the Bertrand curve is a helix.
Theorem 16. Let 𝛼 be a timelike Bertrand curve and let π›Όβˆ— be a
nonhelical timelike Bertrand mate of 𝛼. The geodesic curvature
of the principal image of the principal normal indicatrix of 𝛼𝑏
is
πœŽπ‘
= ((πœ…βˆ—3 (π‘“βˆ—2 βˆ’ 1)
3/2
2
(π‘”βˆ— βˆ’ π‘“βˆ— )
β‹… {πœ…βˆ—σΈ€ σΈ€  πœ…βˆ— (π‘“βˆ—2 βˆ’ 1) + 3πœ…βˆ—σΈ€ 2 (1 βˆ’ π‘”βˆ— π‘“βˆ— )})
β‹… (√1 βˆ’ π‘”βˆ—2
3
βˆ’1
2 3/2
β‹… {πœ…βˆ—4 (π‘“βˆ—2 βˆ’ 1) βˆ’ πœ…βˆ—σΈ€ 2 (π‘”βˆ— βˆ’ π‘“βˆ— ) }
) )
π‘‘π‘ βˆ—
,
𝑑𝑠𝑏
(40)
where |πœ…βˆ—σΈ€  | > |πœβˆ—σΈ€  | and |πœβˆ— | > πœ…βˆ— .
Corollary 17. Let 𝛼 be a timelike Bertrand curve and let π›Όβˆ— be
a nonhelical timelike Bertrand mate of 𝛼. Then, the binormal
indicatrix of the timelike Bertrand curve is a helix if and only if
πœ…βˆ—σΈ€ σΈ€  πœ…βˆ— (π‘“βˆ—2 βˆ’ 1) + 3πœ…βˆ—2 (1 βˆ’ π‘”βˆ— π‘“βˆ— ) = 0
(41)
is satisfied.
Conflict of Interests
The authors declare that there is no conflict of interests
regarding the publication of this paper.
References
[1] J. Bertrand, β€œLa theΜ€ories des courbes a double courbure,” Journal
de Mathématiques Pures et Appliquées, vol. 9, no. 15, pp. 332–350,
1850.
[2] N. Chouaieb, A. Goriely, and J. H. Maddocks, β€œHelices,” Proceedings of the National Academy of Sciences of the United States
of America, vol. 103, no. 25, pp. 9398–9403, 2006.
[3] C. D. Toledo-Suárez, β€œOn the arithmetic of fractal dimension
using hyperhelices,” Chaos, Solitons and Fractals, vol. 39, no. 1,
pp. 342–349, 2009.
[4] J. D. Watson and F. H. C. Crick, β€œGenetical implications of the
structure of deoxyribonucleic acid,” Nature, vol. 171, pp. 964–
967, 1953.
[5] A. A. Lucas and P. Lambin, β€œDiffraction by DNA, carbon nanotubes and other helical nanostructures,” Reports on Progress in
Physics, vol. 68, no. 5, pp. 1181–1249, 2005.
[6] S. Izumiya and N. Takeuchi, β€œNew special curves and developable surfaces,” Turkish Journal of Mathematics, vol. 28, no. 2,
pp. 153–163, 2004.
[7] J. Walrave, Curves and surfaces in Minkowski space [Doctoral
thesis], Katholieke Universiteit Leuven, Faculty of Science,
Leuven, Belgium, 1995.
[8] A. T. Ali and R. Lopez, β€œOn Slant Helices in Minkowski Space
E31 ,” Journal of the Korean Mathematical Society, vol. 48, no. 1,
pp. 159–167, 2011.
Advances in
Operations Research
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Advances in
Decision Sciences
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Journal of
Applied Mathematics
Algebra
Hindawi Publishing Corporation
http://www.hindawi.com
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Journal of
Probability and Statistics
Volume 2014
The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
International Journal of
Differential Equations
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Volume 2014
Submit your manuscripts at
http://www.hindawi.com
International Journal of
Advances in
Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com
Mathematical Physics
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Journal of
Complex Analysis
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
International
Journal of
Mathematics and
Mathematical
Sciences
Mathematical Problems
in Engineering
Journal of
Mathematics
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Discrete Mathematics
Journal of
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Discrete Dynamics in
Nature and Society
Journal of
Function Spaces
Hindawi Publishing Corporation
http://www.hindawi.com
Abstract and
Applied Analysis
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
International Journal of
Journal of
Stochastic Analysis
Optimization
Hindawi Publishing Corporation
http://www.hindawi.com
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Volume 2014