sin 4x cos 4x dx 1 20 cos 4x 1 12 cos 4x + C 1 20 sin 4x +1 12 sin 4x

Name: __________________
1
2
3
sin 4x cos 4x dx
1 cos 5 4x 20
a.
c.
1 sin 5 4x 20
Problem
code: stet.
07.02.01m
Evaluate the integral.
43
4
5
3
sin x cos x dx
21
2
Problem
code:
stet.
07.02.03
Evaluate the integral.
Problem
code:
stet.
07.02.04
PAGE 1
2
5
cos 5x dx
2
1 cos 3 4x + C
12
1 cos 5 4x + 1 cos 3 4x + C
20
12
b. 3
Date: _____________
Evaluate the integral.
2
Class:
1 sin 3 4x + C
12
d. 1 sin 5 4x + 1 sin 3 4x + C
20
12
e. 1 sin 5 4x 20
1 sin 3 4x + C
12
Name: __________________
4
Class:
Date: _____________
Evaluate the integral.
3
sin c x dx
a.
1 sin 3 cx 3c
1 sin cx + C
c
c. b.
1 sin 3 cx 3c
1 cos cx + C
c
d.
1 cos4 cx + C
4c
1 cos 3 cx 3c
1 cos cx + C
c
Problem
code: stet.
07.02.06m
5
Evaluate the integral.
3
tan 4
d
cos a.
1 cot 6 + 1 cot 4 + C
6
4
d.
1 tan 4 4
1 tan 6 + C
6
b.
1 tan 6 + 1 tan 4 + C
6
4
e.
1 tan 6 6
1 tan 4 + C
4
c.
1 cot 6 6
Problem
code: stet.
07.02.33m
6
Evaluate the integral.
1
2
cot 2x dx
2
csc 2x
Problem
code:
stet.
07.02.45
7
Evaluate the integral.
Problem
code:
stet.
07.02.46
PAGE 2
dx
cos 2x 1
1 cot 4 + C
4
e.
1 sin 4 cx + C
4c
Name: __________________
8
Class:
Date: _____________
Evaluate the indefinite integral.
4
sec x dx
3
a. tan
3
b. 3tan
x 3
3tan x + C
3
x 3
tan
3
x + C
3
c. tan
3
d. 3tan
x + 3tan x + C
3
3
3
e. tan
x + 3tan x + C
3
3
Problem
code: stet.
07.02.52m
9
Find the volume obtained by rotating the region bounded by the given curves about the x y = cos 4x , x = 4 , x = 9 , y = 0
2
Problem
code:
stet.
07.02.59
PAGE 3
axis.
3
x + tan x + C
3
3
ANSWER KEY
Homework 7.2 Math 19B Winter 2007, Bauerle
1.
6. a
2.
1 sin 4x +C
( )
4
ANSWER KEY Page 1
7.
11
384
1 csc 2x + 1 cot 2x +C
( )
( )
2
2
3.
8
75
4.
d
c
9. 2
8.
4
5. b