Math 1152 Assignment 6 Solutions DUE DATE: Mar.10,2017. Page 342 40) y= Z √ √ sin xdx x dy= 12 x−1/2 dx, which implies, dy = 1 dx, 2y hence dy2y = dx. Z Z sin(y)dy(2y) = 2 ysin(y)dy Integration By Parts u=y du = dy Z 2[−ycos(y) − dv = sin(y)dy v = −cos(y) √ √ √ −cos(y)dy] = −2ycos(y) + 2cos(y)dy = −2 xcos x + 2(sin x) + C 44) Z 2 sinxcos3 xe1−sin x dx Using sin2 x + cos2 x = 1, sin2 x = 1 − cos2 x Z Z 2 3 (1−(1−cos2 x)) sinxcos xe dx = sinxcos3 xecos x dx u=cosx, du=-sinxdx Z du )= u e (sinx)( −sinx 3 u2 Z 3 u2 Z −u e du = − 2 u3 eu du v = u2 , dv=2udu Z =− u3 e dv( ) = − 2u v y=v dy = dv 1 − 2 Z Z u2 1 e dv( ) = − 2 2 v Z vev dv dw = ev dv v = ev Z −1 v 1 v −1 v ve dv = ve − ev dv = ve + e + C = ... 2 2 2 −1 1 2 2 = (cos2 x)ecos x + ecos x + C 2 2 v 1 48) 1 Z x3 ln(x2 + 1)dx 0 u = (lnx2 + 1) du = 1 x4 (lnx2 + 1)0 − 4 = 1 Z 0 dv = x3 dx 2 1 (2x)(dx) = dx 2 x x 2 x4 1 ( )dx = − x 4 4 Z 1 v= x4 4 1 3 1 1 x dx = − 2 4 2 0 Z 1 x3 dx = ... 0 4 1 1 x 1 1 1 1 2 1 1 − = − ( )( ) = − = 0 4 2 4 4 2 4 8 8 8 50) Z 2 xe−2x dx u=−2x2 du=-4xdx −1 4 54) Z Z −1 −2x2 e +C 4 eu du = Z 2 2x sinxdx = 2 x2 sinxdx Integration By Parts u = x2 dv = sinxdx v = −cosx du = 2xdx 2 2[−x cosx − Z 2 2x(−cosx)dx] = −2x cosx + 4 Z xcosxdx Integration By Parts u=x du = dx 2 −2x cosx + 4[xsinx − 58) Z dv = cosxdx v = sinx sinxdx] = −2x2 cosx + 4xsinx + 4cosx + C Z x2 1 dx +3 2 Note that, with constant "a", Z Z Z 1 1 1 1 dx = dx = dx∗ = ... ∗ ∗ a2 + x2∗ a2 (1 + (x2∗ /a2 )) a2 1 + (x∗ /a)2 v= xa∗ , dv=(1/a)dx∗ , which implies (a)dv=dx∗ Z Z Z Z 1 1 1 1 1 1 a 1 dx∗ = 2 (a)dv = 2 dv = dv = ... 2 2 2 2 a 1 + (x∗ /a) a 1+v a 1+v a 1 + v2 = Hence, 1 x∗ 1 arctan(v) + C = arctan( ) + C a a a Z x2 1 1 x dx = √ arctan( √ ) + C +3 3 3 66) 2 Z ln(x2 ex )dx 1 u = ln(x2 ex ) 1 2+x du = 2 x (2xex ) + ex x2 = xe x dv = dx v=x (Note that, a(ln b)=(ln(ba ))) Z 2 Z 2 2 2 2 + x 2 x 2 x ln(x e )(x)1 − )(x)dx = ln(x e )(x)1 − ( (2 + x)dx = ... x 1 1 Z 2 Z 2 2 2 2 x2 2 2 x = ln(x e )(x) 1 − 2dx − xdx = ln(x2 ex )(x)1 − 2x1 − 1 = ... 2 1 1 1 = 2(ln(4e2 )) − 4 − 2 − [ln(e) − 2 − ] = ... 2 1 −3 1 = ln(16) − 2 − [1 − 2 − ] = ln(16) − 2 − ( ) = ln(16) − 2 2 2 70) Z π/6 (1 + tan2 x)dx 0 2 2 Using 1 + tan x = sec x (From table of integrals, Z π/6 2 Z (1 + tan x)dx = 0 0 π/6 R sec2 xdx = tanx + C) π/6 1 1 sec2 xdx = (tanx)0 = √ − 0 = √ 3 3 Page 350 2) x2 − 4x − 1 x−1 Degree of numerator is higher than the degree of the denominator. f (x) = − Using Long Division 3 −x+3 x − 1 − x2 + 4x + 1 x2 − x 3x + 1 − 3x + 3 4 Hence, f (x) = − x2 − 4x − 1 4 = −x + 3 + x−1 x−1 4) x3 − 3x2 − 15 x2 + x + 3 Degree of numerator is higher than the degree of the denominator. f (x) = Using Long Division x −4 x2 + x + 3 x3 − 3x2 − 15 − x3 − x2 − 3x − 4x2 − 3x − 15 4x2 + 4x + 12 x −3 Hence, f (x) = x−3 x3 − 3x2 − 15 =x−4+ 2 2 x +x+3 x +x+3 8) f (x) = 16x − 6 (2x − 5)(3x + 1) Using Partial Fractions A B A(3x + 1) + B(2x − 5) 3Ax + A + 2Bx − 5B + = = 2x − 5 3x + 1 (2x − 5)(3x + 1) (2x − 5)(3x + 1) Hence, (3A + 2B)x = 16(x) A − 5B = −6 (1) (2) From (2), A=5B-6, Sub in A=5B-6 into (1), 3(5B-6)+2B=16 15B-18+2B=16 17B=34 Therefore, B=2 Sub B=-2 into (2) A-5(2)=-6 4 A-10=-6 A=4 Therefore, f (x) = 16x − 6 4 2 = + (2x − 5)(3x + 1) 2x − 5 3x + 1 10) f (x) = 9x − 7 − 7x + 3 2x2 Factor the denominator, 2x2 − 7x + 3 = 2x2 − 6x − x + 3 = 2x(x − 3) − 1(x − 3) = (2x − 1)(x − 3) f (x) = 9x − 7 (2x − 1)(x − 3) Using Partial Fractions, B A(x − 3) + B(2x − 1) Ax − 3A + 2Bx − B A + = = 2x − 1 x − 3 (2x − 1)(x − 3) (2x − 1)(x − 3) Hence, (A+2B)x=9x -3A-B=-7 (1) (2) From (2), B=7-3A Sub in B=7-3A into (1) A+2(7-3A)=9 A+14-6A=9 -5A=-5 A=1 Sub in A=1 into B=7-3A, B=7-3(1) B=4 Therefore, f (x) = 14) 9x − 7 1 4 = + (2x − 1)(x − 3) 2x − 1 x − 3 Z 1 dx x(2x + 1) Using Partial Fractions, B A(2x + 1) + B(x) 2Ax + A + Bx A + = = x 2x + 1 x(2x + 1) x(2x + 1) Therefore, (2A+B)x=0(x) (1) A=1 (2) 5 Sub A=1 into (1) 2(1)+B=0 B=-2 Hence, A B 1 −2 + = + x 2x + 1 x 2x + 1 Therefore, Z 1 dx = x(2x + 1) Z 1 dx + x Z −2 dx = ln|x| − 2 2x + 1 Z 1 dx 2x + 1 R 1 Note that, 2x+1 dx, u=2x+1, du=2dx, which implies dx = du . 2 R 1 du R 1 R 1 1 1 1 dx = u ( 2 ) = 2 u du = 2 ln|u| + C = 2 ln|2x + 1| + C 2x+1 Therefore, Z 1 dx = x(2x + 1) Z 1 dx + x Z 1 −2 dx = ln|x| − 2( ln|2x + 1|) + C = ... 2x + 1 2 = ln|x| − ln|2x + 1| + C 18) Z 4x2 − x − 1 dx (x + 1)2 (x − 3) Using Partial Fractions A B C + + = ... 2 x + 1 (x + 1) x−3 = A(x + 1)(x − 3) + B(x − 3) + C(x + 1)2 = ... (x + 1)2 (x − 3) A(x2 − 2x − 3) + B(x − 3) + C(x2 + 2x + 1) = (x + 1)2 (x − 3) Hence, (A + C)x2 = 4x2 , which implies A+C=4 (1) (−2A + B + 2C)x = −x, which implies -2A+B+2C=-1 (2) (-3A-3B+C)=-1 (3) From (1), A=4-C From (2), B=-1+2A-2C From (3), -3B=-1+3A-C Sub B=-1+2A-2C into -3B=-1+3A-C -3B=-1+3A-C -3(-1+2A-2C)=-1+3A-C 3-6A+6C=-1+3A-C 7C=-4+9A 6 Sub in A=4-C into 7C=-4+9A Hence, 7C=-4+9(4-C) 7C=-4+36-9C 16C=32 C=2 Sub C=2 into (1) A=4-C=4-2=2 Hence, A=2 Sub in A=2 and C=2 into (2) B=-1+2(2)-2(2)=-1+4-4=-1 Therefore, A=2, B=-1, and C=2 Z Z Z 4x2 − x − 1 2 −1 2 dx = dx + dx = ... dx + 2 2 (x + 1) (x − 3) x+1 (x + 1) x−3 Z Z Z 1 1 1 =2 dx − dx + 2 dx = ... x+1 (x + 1)2 x−3 Z 1 = 2ln|x + 1| − dx + 2ln|x − 3| + C (x + 1)2 R 1 Note that, (x+1) 2 dx, u=x+1, du=dx R 1 R 1 1 dx = u2 dx = − u1 + C = − x+1 +C (x+1)2 Z Therefore, Z Z = 2ln|x + 1| − 4x2 − x − 1 dx = ... (x + 1)2 (x − 3) 1 1 dx + 2ln|x − 3| + C = 2ln|x + 1| + + 2ln|x − 3| + C (x + 1)2 x+1 7
© Copyright 2026 Paperzz