Chapter 4 The Catalytic Chemistry of Palladium (II) G. Poli Main “Non-organometallic” Pd (II) Sources Cl [PdCl2]n Pd Pd = Cl Cl Cl Cl Pd insoluble n Cl 2 LiCl 2 MeCN 2 PPh3 PdCl2(MeCN)2 2 AgCl PdCl2(PPh3)2 Li2PdCl4 2 AgBF4 2 MeCN O Pd(OAc)2 Pd(MeCN)4(BF4)2 soluble = Me O Me Pd O O G. Poli Oxidative Palladations [Pd(II)X2] ____→ [Pd(0)] [Ox] ____→ [Pd(II)X2] G. Poli Reactivity of a Pd(II)-coordinated Alkene Nu anti palladation PdX2 H . R H X[Pd]X Nu X[Pd] HX Nu: H2O, X-, carbanions… R σ-alkyl-Pd syn palladation H . H R'[Pd]X R'[Pd]X R H H R' H R [Pd]X σ-alkyl-Pd as in Mizoroki-Heck chemistry Addition of Nucleophiles to Alkenes: General Reactivity stoichiometric reactions NuA R PdCl2 R Cl Pd Cl Pd Cl Cl add. to the most substituted C atom R NuA Cl[Pd] (in solution) R [Pd(0)] + HCl A H Cl[Pd] R NuA R NuA dehydropalladation [Pd(0)] + Cl B Cl[Pd] R R NuB NuA displacement NuB [Pd(0)] + HCl C NuA = H2O Cl[Pd] H hydride shift NuA O R O H Typical nucleophiles known to react with the coordinated alkenes: water, alcohols, carboxylic acids, ammonia, amines, enamines and active methylene compounds. H3C R See later the detailed mechanism Tsuji, J. Acc. Chem. Res. 1969, 2, 144 G. Poli Hydroxypalladation stoichiometric reactions depending on the reaction conditions the intermediate β-hydroxypalladium complex may suffer either hydride shift or displacement + PdCl2 H2O Cl[Pd] hydroxypalladation H O H [Pd(0)] + HCl CH3CHO hydride shift [Pd(0)] + Cl + PdCl2, LiCl H2O hydroxypalladation Cl[Pd] Cl OH Cl OH displacement Smidt, J.; Hafner, W.; Jira, R.; Sieber, R.; Sedlmeier, J.; Sabel, J. Angew. Chem. Int. Ed. Engl. 1962, 1, 80 G. Poli Catalytic Hydroxypalladation: the Wacker Process This is the industrial process for acetaldehyde production from ethylene, developed simultaneously by Wacker-Chemie and by the group of Moiseev (1959). PdCl2 cat, CuCl2 cat CH3CHO H2O, HCl, O2 50-130 °C, 3-10 atm 95% C2H4 + PdCl42- + 3H2O -----> H3CCHO + Pd(0) + 2H3O+ + 4ClPd(0) + 2CuCl2 + 2Cl- ------> PdCl42-+ 2CuCl 4CuCl + 4H3O+ + 4Cl- + O2 -----> 4CuCl2 + 6H2O C2H4 + 1/2 O2 ------> H3CCHO Oxidation of Pd(0), a noble metal, with CuCl2, a base metal salt, is expected to be very difficult ! The CuCl is easily reoxidized to CuCl2 with oxygen. Smidt, J.; Hafner, W.; Jira, R.; Sedlmeier, J.; Sieber, R.; Rüttinger R.; Kojer, H. Angew. Chem., 1959, 71, 176. Feringa, B. L. in Wacker Oxidation, Transition Metals for Organic Synthesis, Beller, M. and Bolm, C. Ed., WileyVCH, 1998, chapter 2.8, pp 307-315. G. Poli The Mechanism of the Wacker Process HCl, H2O, PdCl2 cat, CuCl2 cat, O2 CH3CHO HCl Pd(0) PdCl2 Cl Pd 2CuCl Cl Cl- H2O 1/2 O2 + 2HCl H Cl H2O O Cl Cl- Cl H Pd Cl O H Cl H2O H+ Pd Cl H OH chloride mediated reductive elimination 2 CuCl2 H2O Pd H CH2 insertion H2O ClCl H2O H Pd H H Cl OHdehydro- H2O palladation Pd OH The anti hydroxypalladation is likely due to the presence of chloride anion Bäckvall, J. E.; Åkermark, B.; Ljunggren, S. O.; J. Am. Chem. Soc. 1979, 101, 2411 Keith, J. A.; Oxgaard, J.; Goddard, W. A. J. Am. Chem. Soc. 2006, 128, 3132-3 G. Poli The Mechanism of the Wacker Process The detailed mechanism of the hydride shift Cl H2O Pd Cl H hydride shift O Cl OH Pd H2O H Cl- dissociation (rate det. step) Cl H2O H Pd H HCl H2O H CH3CHO + [Pd(0)] CH2 insertion dehydropalladation OH H Cl Pd H2O OH HCl H2O D2O CH2DCHO + [Pd(0)] no enol decoordination The reaction is formally a dehydrogenative coupling H + H O + H 1/2O2 H cat. OH + O H G. Poli The Tsuji Variation of the Wacker Reaction Higher alkenes can be oxidized to ketones in solvents that dissolve both the alkene and water (DMF). Stoichiometric oxidants (benzoquinone, O2/CuCl2, S2O8, MeONO… ) can be used to re-oxidize Pd(0) to Pd(II). The attack obeys the Markovnikov rule. Thus, terminal alkenes can be viewed as masked methyl ketones. PdCl2 cat. CuCl cat O2, H2O, DMF (68%) O O good method to obtain 1,4-diketones O PdCl2 cat. CuCl cat O2, H2O, DMF (~80%) O OAc OAc BnO O O O BnO PdCl2 cat. H2O, DMF 45°C, (60%) O O terminal alkenes are more reactive than internal ones. BnO O O O taxol derivative O OBn OEDMS O OBn OEDMS CO2Me Na2PdCl4 cat. t-BuOOH, i-PrOH (64%) OBn OEDMS CO2Me O regioselective reaction with Michael acceptors. In this case the peroxide, and not H2O, is the nucleophile. Tsuji, J. Comprehensive Organic Synthesis 1991, vol 7, 449 Iwadare, H.; Satoh, H.; Arai, H.; Shiina, I.; Mukaiyama, T. Chem. Lett. 1999, 817 G. Poli Alkoxypalladation stoichiometric reaction hydride shift and dehydropalladation may be competitive paths base HCl + MeOH PdCl2, base [Pd(0)] + HCl [Pd(0)] Cl Cl[Pd] methoxypalladation OMe H Cl[Pd] H OMe OMe H3C H3C hydride shift MeOH OMe major [Pd(0)] + HCl OMe dehydropalladation OMe minor G. Poli Alkoxypalladation Efficient reoxidation of Pd(0) to Pd(II) is sometimes possible (without copper) in the presence of special ligands such as DMSO or pyridine. In this latter case the oxidation is expected to pass through a peroxopalladium(II) complex O2 O Py2Pd Py2Pd(0) 2 HCl H2O2 + Py2PdCl2 O peroxopalladium(II) complex Stahl, S. S.; Thorman, J. L.; Nelson, R.C.; Kozee, M. A. J. Am. Chem. Soc. 2001, 123, 7188 Pd(OAc)2 5 mol% DMSO, O2 (95%) H H + OH O O H H 95 : 5 Rönn, M.; Bäckvall, J. E.; Andersson, P.G. Tetrahedron Lett. 1995, 36, 7749 G. Poli Alkoxypalladation Carbonylative oxidation OMe H OH PdCl2 (5mol%) CuCl2 (2equiv.) CO, MeOH OMe H O CO2Me O O Propose a plausible mechanism for this transformation Phenolic oxygen atoms participate easily in oxypalladations: Review: Hosokawa, T.; Murahashi, S. Heterocycles, 1992, 33, 1079 O Pd(MeCN)4(BF4)2 L*, benzoquinone OH MeOH, 25°C (90%) N O 97% ee N O L* = (S,S)-ip-boxax Uozumi, I.; Kato, K. Hayashi, T.J. Org. Chem. 1988, 63, 5071 G. Poli Alkoxypalladation The stereochemistry of the alkoxypalladation may be syn or anti depending on the reaction conditions. The origin of this delicate balance has not been completely elucidated. The presence of chloride anions has been evoked as a possible reason for anti addition. D bis[acetoxy(3,2,10-η3-pinene)Pd(II) (10%) Cu(OAc)2 10% O2, MeOH reflux (82%) Pd H Ac O 2 O OH mainly this isomer via syn oxypalladation PdCl2(MeCN)2 (10%) D benzoquinone (1.0 equiv;) Na2CO3 (2.0 equiv.) LiCl (2.0 equiv;) THF, reflux (59%) OH bis[acetoxy(3,2,10-η3-pinene)Pd(II) D O mainly this isomer and mainly via anti oxypalladation followed by dehydroPd, hydropd... Hayashi, T., Yamasaki, K.; Mimura, M. M.; Uozumi, Y J. Am. Chem. Soc.. 2004, 126, 3036-7 Trend, R. M.; Ramtohul, Y. K.; Stolz, B. M. J. Am. Chem. Soc. 2005, 127, 17778-88 G. Poli Alkoxypalladation Syn alkoxypalladation HX HO X[Pd] X[Pd] O HX O O PdX2 Anti alkoxypalladation HO HX HX HX HO O O X[Pd] PdX2 G. Poli Acetoxypalladation stoichiometric reaction [Pd(0)] + AcOH Industrial production of vinyl acetate (Kuraray). Pd supported on silica or alumina is used as AcO[Pd] H Pd(OAc)2 a catalyst. Pd oxidation is expected to take place on the surface of the support. OAc dehydropalladation OAc acetoxypalladation (AcO is EWG: no H-shift) catalytic reaction H2O 1/2 O2 Pd(AcO)2/SiO2 Pd(0)/SiO2 + 2AcOH + AcOH gas phase OAc Nakamura, S.; Yasui, T.J. Catal. 1976, 17, 366 G. Poli Allylic Acetoxylation of Cyclohexene The acetoxylation of cyclohexene does not proceed via acetoxypalladation as for ethylene and affords allylic oxidation. Labeling experiments unveiled that a η3-allyllpalladium complex is involved. Pd(OAc)2 cat. AcOH benzoquinone OAc OAc OH O HO 2 AcOH Pd(OAc)2 [Pd(0)] O O O OAc BQ [Pd(0)] Pd O H H O Pd AcOH O O OAc O O Grennberg, H. and Bäckvall, J.E. Chem. Eur. J. 1998, 4, 1084 G. Poli Intramolecular Carboxylation of Alkenes Pd(TFA)2 (10 mol %), pyridine (40 mol%) Na2CO3 (2.0 equiv.), MS3Å, 1 atm O2, tol 80°C (86%) O O CO2H O CO2H Experiments with deuterated substrates showed the operation of an anti carbopalladation mechanism D CO2Et CO2Et CO2H D CO2Et CO2Et O Pd(TFA)2 (10 mol %) pyridine (20 mol%) Na2CO3 (2.0 equiv.), MS3Å, 1 atm O2, tol 80°C (86%) CO2Et CO2Et H O O D CO2Et CO2Et Trend, R. M.; Ramtohul, Y. K.; Stolz, B. M. J. Am. Chem. Soc. 2005, 127, 17778-88 G. Poli Aminopalladation PdCl2(MeCN)2 Cl Pd N H2 stable NH2 Cl Aliphatic amines coordinate Pd(II) too strongly to promote aminopalladation. On the other hand, nitrogen-based nucleophiles with reduced availability of the N lone pair (acetamides, tosylamides, anilines) do undergo catalytic aminopalladation. Cl Cl Pd PdCl2(MeCN)2 HN O N Pd Cl HN O O stable PdCl2(MeCN)2 (1 mol%) benzoquinone (1.0 equiv.) LiCl, THF (60-90%) NH Ts N Ts PdCl2(MeCN)2 (2 mol%) NRH R = H, Ac, Ts benzoquinone (2.0 equiv.) LiCl, THF (60-86%) N R Hegedus, L. S.; Comprehensive Organic Synthesis, 1991, 4, 551, 571 G. Poli Aminopalladation py2Pd(OAc)2 cat O2 (1atm), xylene 80°C, (87%) NH Ts N Ts Fix, S. R.; Brice, J. L.; Stahl, S. S. Angew. Chem. Int. Ed. 2002, 41, 164 G. Poli 1,4-Chloroacetoxylation and Diacetoxylation of 1,3-Dienes OAc Pd(OAc)2 cat. LiOAc benzoquinone AcOH, LiCl Pd(OAc)2 cat. LiOAc benzoquinone AcOH AcO OAc Cl Pd(OAc)2 cat. LiOAc benzoquinone AcOH, LiCl cat. OAc AcO Bäckvall, J.-E. in Metal-Catalyzed Cross Coupling Reactions, Stang, P. J.; Diederich, F. Eds., Wiley - VCH, Weinheim, 1998, p. 339. G. Poli 1,4-Chloroacetoxylation and Diacetoxylation of 1,3-Dienes OH Pd(OAc)2 OH 2H O X Pd(0) Pd AcO OAc O O X Y X O AcO X Y Pd AcO O AcO O G. Poli 1,4-Chloroacetoxylation and Diacetoxylation of 1,3-Dienes Pd(OAc)2 cat., LiOAc, benzoquinone, LiCl, AcOHCl OAc Cl AcO - Cl Pd L - - Pd OAc Pd Cl L L L Cl Cl BQ Pd(OAc)2 cat., LiOAc, benzoquinone, LiCl cat. AcOH - OAc OAc Cl AcO - Cl Pd L L OAc - Pd Pd Cl L L OAc BQ Pd(OAc)2 cat., LiOAc, benzoquinone, AcOH OAc AcO OAc O Pd L - AcO Pd L Me O BQ Bäckvall, J.-E. in Metal-Catalyzed Cross Coupling Reactions, Stang, P. J.; Diederich, F. Eds., Wiley - VCH, Weinheim, 1998, p. 339. G. Poli Oxidative Carbocyclization of Allene-Substituted Olefins MeO2C CO2Me Pd(O2CCF3)2 (10%), BQ (20%), FePc (10%), O2, Tol 95°C MeO2C CO2Me . MeO2C CO2Me OH Pd(II) FePc(ox) H2O CO2Me FePc = FePc(red) ½ O2 O Piera, J.; Närhi, K.; Bäckvall, J.-E. Angew. Chem. Int. 2006, 45, 6914-6917 N Fe N N N O Pd(0) N N OH MeO2C N N Oxidative Carbocyclization of Allene-Substituted Olefins MeO2C CO2Me MeO2C CO2Me Pd(II) coord H (D)H H (D)H . Pd CO2Me MeO2C olefin insertion H (D)H . F3CCO2 MeO2C allene-attack on Pd(II) Pd CF3CO2H O2CCF3 O2CCF3 CO2Me H (D)H F3CCO2[Pd] dehydropd [Ox] CF3CO2Pd(D)H Pd(0) Pd(II) CF3CO2(D)H MeO2C H (D)H F3CCO2 MeO2C CO2Me syn C-H clevage by Pd(II) . (D)H CO2Me MeO2C CO2Me [Pd]O2CCF3 (D)H Pd O2CCF3 F3CCO2 MeO2C CO2Me . reaction OK MeO2C CO2Me allene insertion . (D)H Pd CO2Me MeO2C no reaction A mechanism involving π-allyl intermediates (see low path) is ruled out by the results obtained using the substrates showed at the left. Oxidative Carbocyclization of 1,3-Dienyl Allenes MeO2C Pd(OAc)2 (10 mol%) Li2CO3 (5 equiv.) BQ (2 equiv) AcOH (20 equiv) acetone, rt, 20 h, (79%) CO2Me . MeO2C AcO CO2Me H [Pd(II)] BQ allene add to [Pd(II)] AcOH [Pd(II)] AcOH [Pd(0)] red elim HQ anti acetate add H[Pd]OAc BQ MeO2C CO2Me MeO2C CO2Me BQ [Pd]OAc syn vinyl-Pd alkene carbopd AcO Pd BQ Löfstedt, J.; Franzén, J.; Bäckvall, J. E. J. Org. Chem. 2001, 66, 8015 Löfstedt, J.; Närhi, K.; Dorange, I.; Bäckvall, J.-E. J. Org. Chem. 2003, 68, 7243-7248. Oxidative Carbocyclization of Indoles Me PdCl2(MeCN)2 cat, BQ, THF-DMF 80°C, (98%) N N H N Me Me N H O HQ BQ O HX H[Pd]X [Pd(0)] [Pd(II)] st 1 hypothesis [Pd]X PdX2 H N N O H 2 nd X HX N Me carbopd Me H[Pd]X O N H dehydropd N Me N H O dehydropd hypothesis X2Pd HX O N H N X [Pd] X[Pd] N Me N Me orthopd N H O Me carbopd O N H Cyclization via the indol nitrogen can be obtain by Pd(0) catalysis (see chapter 3) Abbiati,G.; Beccalli, E.M.; Broggini, G.; Zoni, C. J. Org. Chem. 2003, 68, 7625-7628 G. Poli Oxidative Mizoroki-Heck Coupling Coupling of organometallic compounds of B, Sn and Si with alkenes as a halogen-free oxidative Mizoroki-Heck type reaction takes place with catalytic amounts of Pd(II) in the presence of oxidants. In this particular case the catalytic cycle starts with a transmetallation rather than an oxidative addition. Pd(OAc)2, O2, Na2CO3 DMF, 50°C, 87% OH Ph B OH Ph CO2Me CO2Me 1/2 Na2CO3 AcONa 1/2 H2O + 1/2 CO2 transmetallation HO [Pd(II)] B OAc HO Ph [Pd] OAc [Pd(0)] oxidation CO2Me insertion H[Pd]OAc dehydropalladation H [Pd]OAc Ph CO2Me conformational change Ph [Pd]OAc CO2Me Jung, J.C.; Mishra, R. K.; Yoon, C. H.; Jung, K. W. Org. Lett. 2003, 5, 2231 Cho, C. S.; Uemura, S. J. Organometal. Chem. 1994, 465, 85 Hirabayashi, K.; Ando, J.; Nishihara, Y.; Mori, A.; Hiyama, T. Synlett,. 1999, 99 G. Poli Non-oxidative Palladations [Pd(II)] ____→ [Pd(II)] G. Poli Palladations followed by deoxypalladations G. Poli Acetoxypalladation / Carbopalladation Me Ligands Me OAc Pd(OAc) cat. AcOH, L O O 4-acetoxy-2-butenyl-2-alkynoate AcO O trans acetoxypalladation N O deacetoxypalladation O O N Me Me [Pd]OAc OAc carbopalladation AcO N N [Pd]OAc OAc AcO (92% ee) O O O O In the presence of halide ligands, chloropalladation (instead of acetoxypalladation) takes place. Excess of halide inhibits dehydropalladation Lu, X.; Zhang, Q. J. Am. Chem. Soc., 2000, 122, 7604 G. Poli Aminopalladation OBn MOMO OBn N Boc PdCl2(MeCN)2 (15 mol%) OH OBn MOMO diastereoselective OBn HO OH N H N Boc 1-deoxymannojirimycin OH Pd(II) OBn MOMO OBn OBn MOMO OBn PdCl2 N Boc OH N Boc [Pd]Cl OH Yokoyama, H.; Otaya, K.; Kobayashi, H.; Miyazawa, M.; Yamagichi, S.; Hirai, Y. Org. Lett. 2000, 2, 2427 G. Poli Aminopalladation LiBr is essential to promote the desired deacetoxypalladation O O O O NH Ts O O Pd(OAc)2, LiBr diastereoselective X HO OH O O N N Ts H OH X = OAc, OCONHTs Lei, A.; Liu, G.; Lu, X. J. Org. Chem. 2002, 67, 974 G. Poli Cycloisomerisations Lloyd-Jones, G. C. Org. Biomol. Chem. 2003, 1, 215 Trost, B. M.; Krische, M. J. Synlett 1998, 1. Ojima, I.; Tzamarioudaki, M.; Li, Z.; Donovan, R. J. Chem. Rev. 1996, 96, 635. Trost, B. M. Janssen Chimica Acta, 1991, 9, 3. G. Poli Cycloisomerization of 1,6-enynes R R H intramolecular Alder-ene thermal (very high temperatures) Other transition metals such as Rh, Ru, Pt are capable of effecting cycloisomerisation H with or without skeletal rearrangements of 1,6-enynes. 1,6-dienes can also undergo similar cycloisomerizations R C C R Pd(II) cat. intramolecular Alder-ene R' C CH H (via Pd hydride or oxidative cyclization mechanism) Pd(II) cat. skeletal rearrangement (Ring Closing Metathesis) R C H C H and/or R' CH2 and R' C H C CH2 (via oxidative cyclization) CH2 regular bond connectivity anomalous bond connectivity Typical catalytic systems: 1. Pd(OAc)2 / PAr3; 2. Pd2(dba)3 / AcOH; 3. [Pd(MeCN)4]2+; 4. TCPC / P(OAr)3 MeO2C MeO2C CO2Me Pd (TCPC) CO2Me The mechanism of these completely atom economical cyclizations is still matter of speculation. Catalytic systems 1-3 are expected to follow the Pd hydride mechanism, whereas catalytic system 4 is supposed to trigger oxidative cyclization. G. Poli The Hydridopalladium Mechanism No redox in the catalytic cycle ! H [Pd(II) or Pd(0)] cat. and/or H 1,4-diene 1,3-diene dehydropalladation H[Pd]OAc H H H hydropalladation OAc carbopalladation H H [Pd]OAc H Pd H [Pd]OAc H H The RCO2[Pd]H species is expected to be generated in situ via: a) oxidative addition of [Pd(0)] on a carboxylic acid (i.e. AcOH or HCO2H) b) interaction between the Pd(O2CR)2 and adventitious H2O) a) [Pd(0)] + AcOH b) Pd(O2CCF3) + H2O AcO[Pd]H CF3CO2[Pd]H + CF3CO2H G. Poli The Oxidative Cyclization Mechanism H [Pd(0 or II)] cat H and/or reductive elimination [Pd(0 or II)] H oxidative cyclization H [Pd(0 or II)] H H [Pd(II or IV)] dehydroPd H H and/or [Pd(II or IV)] H [Pd(II or IV)] G. Poli 1,3 Versus 1,4-Dienes as Products Hydridopalladium Mechanism H H R' Oxidative Cyclization Mechanism In the oxidative cyclization mechanism, exchange between R-Pd-H and AcOH after beta-elimination, but prior to reductive elimination cannot be ruled out. R H H R' R R' AcO[Pd]H R' Hb 1,4-diene Hb [Pd]OAc [Pd(II)] H Ha R Ha R' H R' Hb Ha [Pd(IV)] R' Ha Hb R H 1,3-diene R [Pd(II)] R' Ha Hb R [Pd(II)] R Independently of the operating mechanism, dehydropalladation normally takes place on Ha thereby affording a 1,4-diene. However, such a preference can be switched to favor the 1,3-diene if: a) steric congestion is increased around Ha, b) CHa is bound to an EWG group, c) a juxtaposed unsaturation on R blocks the conformational freedom via coordination to Pd. All these factors inhibiting dehydropalladation via Ha. G. Poli Cycloisomerizations Leading to 1,4-Dienes (Ph3P)2Pd(OAc)2 cat. PhH, 70°C (77%) OMe OMe PMBO PMBO Pd(OAc)2 5% DCE, 60°C, (39%) MeO2C MeO2C MeO2C MeO2C only CO2Me CO2Me CO2Me (Ph3P)2Pd(OAc)2 cat. THF, 66°C, (85%) the thermal cyclization failed CO2Me CO2Me CO2Me G. Poli Cycloisomerizations Leading to 1,3-Dienes MeO2C MeO2C Steric congestion at the allylic substituent MeO2C PMBO Remote binding MeO2C Ha MeO2C MeO2C (oTol3P)2Pd(OAc)2 Tol, 80°C, (80%) Allylic carbon bound to a heteroatom MeO2C (Ph3P)2Pd(OAc)2 5% THF, 66°C, (64%) Ha Hb Hb PMBO OTBDMS OTBDMS Pd(OAc)2 5% PhH, 60°C, (82%) MeO2C [Pd]OAc or No external allylic hydrogen: no choice MeO2C MeO2C 1,3 : 1,4 = 15 : 1 [Pd(IV)] Pd(OAc)2 C6D6, 60°C (96%) PMBO OMe N N Ph (BBEDA) Ph PMBO OMe 1,3-diene G. Poli Asymmetric Cycloisomerization of 1,6-enynes CO2Me [(MeCN)4Pd](BF4)2 (5 mol %) (S)-Xyl-SEGPHOS (10 mol%) DMSO, 80°C (> 99% y, 96% ee) CO2Me R O O O O [(MeCN)4]Pd](BF4)2 O O traces of H2O H[Pd]+[BF4]- (S)-Xyl-SEGPHOS dehydropalladation CO2Me H hydropalladation + [Pd] [BF4]O [Pd]+[BF4]H P P H [Pd]+[BF4]- carbopalladation CO2Me CO2Me O O Hatano, M.; Terada, M.; Mikami, K. Angew. Chem. Int. 2001, 40, 249 G. Poli Pd(0)-Catalyzed Cycloisomerization of 1,6-Alkenyl Allenes MeO2C MeO2C CO2Me CO2Me Pd(dba)2 (5 mol%) CO2Me + οC . MeO2C AcOH, 120 8 minutes (83%) 88 : MeO2C CO2Me 12 [Pd(0)] + (D)HOAc MeO2C () oxidative addition CO2Me n MeO2C () hydroPd n () (D)HPdOAc n . CO2Me . [Pd] Pd n = 0, 1 AcO MeO2C CO2Me () n (D) (D) OAc olefin insertion H(D) MeO2C CO2Me () dehydropd. n -HPdOAc (D) AcO [Pd] Närhi, K.; Franzén, J.; Bäckvall, J. E. Chem. Eur. J. 2005, 11, 6937-6943 Palladium (II) as Lewis Acid (no organopalladium species involved) G. Poli Palladium Enolates Preparation of the aqua and the hydroxy Pd complexes PPh2 P C C P PPh2 P O 2AgCl enantioselective aldol condensation Ph Ph C O Pd P P Pd O C C P H aqua Pd complex A O C O H H HH (R)-BINAP OSiMe3 2TfO NaOH Pd 2+ 1. PhCHO cat A (1 mol%) tetramethylurea 0°C 2. H3O+ 2TfO H PdCl2 2AgOTf wet DMF mol. sieves dinuclear Pd(µ-OH) complex B mechanism OH Ph H 2TfO H O 2+ P Pd Me3Si O P H H H2O Ph 92%, 89%ee TfOH, Me3SiOH O O 2TfO 2+ P Pd P Ph Pd enolate Yamashima, Y.; Sodeoka, M. The Chemical Record, 2004, 4, 231-242 G. Poli
© Copyright 2026 Paperzz