Exponential and Logarithms Test Review

Exponential and Logarithms Test Review
Solve each of the following exponential equations. Round to three decimals when necessary.
1. 2! = 7
2. 4!!! = 3
6. 10!!!! + 4 = 32
3. 7 βˆ™ 𝑒 !!! = 57
7. 4! βˆ’ 5 = 3
4. 8𝑒 !! = 20
5. 𝑒 !!!! = 4
8. 4 βˆ’ 2𝑒 ! = βˆ’23
9. 3!!! = 3!
Solve the following logarithmic equations. Round to three decimals when necessary.Check your answer
10. ln π‘₯ = 8
11. log ! π‘₯ + 2 = 5
12. log ! 25 βˆ’ π‘₯ = 3
13.4 + 3 log(2π‘₯) = 16
14. log π‘₯ + 2 + log(π‘₯ βˆ’ 1) = 1
15. 5 ln(3 βˆ’ π‘₯) = 4
16. log ! (π‘₯ + 2) = log ! π‘₯ !
17. ln(π‘₯ + 5) = ln(π‘₯ βˆ’ 1) βˆ’ ln(π‘₯ + 1)
18. βˆ’5 + 2 ln 3π‘₯ = 5
19. log ! βˆ’4π‘Ÿ βˆ’ 8 = log ! π‘Ÿ + 7
Approximate the value to 3 decimal places using CHANGE OF BASE
20. log ! 4
21 log ! 43
22. log ! 47
23 log 27
Exponential and Logarithms Test Review
Condense each expression to a single logarithm.
24. 2 log ! π‘₯ βˆ’ 4 log ! 𝑦
25 5 log ! π‘Ž + 15 log ! 𝑏
26. 3 log ! π‘₯ βˆ’ 4 log ! (π‘₯ + 3)
Expand each logarithm.
27. log ! π‘₯ ! 𝑦
28. log !
!!
29. log ! (
!
!! !
!
)
30. Graph each exponential function and fill out the table of important information.
a) 𝑦 = βˆ’ 3
!!!
+3
b) 𝑦 = 2
! !
!
βˆ’2
Parent Function:
Parent Function:
Translations:
Translations:
HA:
HA:
Domain:
Domain:
Range:
Range:
31. Write the equation for the function 𝑦 = 4! , given the following translations:
a) reflected over the x-axis b) shifted up 5 units and left 3 units
c) stretched by a factor of 2
Exponential and Logarithms Test Review
32. Find the inverse of each function and tell me whether the inverse is a function:
!!
Function?
a). 𝑓 π‘₯ = ! π‘₯ βˆ’ 12
b). 𝑓 π‘₯ = 4π‘₯ ! + 2
!
c). 𝑓 π‘₯ = !!!"
π‘₯+3
e) 𝑑 π‘₯ = 5βˆ’π‘₯
d(. 𝑓 π‘₯ = (5 βˆ’ π‘₯)!
Function?
Function?
Function?
f). 𝑝 π‘₯ = π‘₯ ! βˆ’ 4π‘₯ + 1 Function?
Function?
Rewrite each into logarithmic form:
!
33. 3! = 12
34. 2!! = !
35. 𝑒 ! = 15
Rewrite each into exponential form:
!
36. log !" 7 = !
37. ln 14 = π‘₯
!
38. log ! ! = βˆ’2