Exponential and Logarithms Test Review Solve each of the following exponential equations. Round to three decimals when necessary. 1. 2! = 7 2. 4!!! = 3 6. 10!!!! + 4 = 32 3. 7 β π !!! = 57 7. 4! β 5 = 3 4. 8π !! = 20 5. π !!!! = 4 8. 4 β 2π ! = β23 9. 3!!! = 3! Solve the following logarithmic equations. Round to three decimals when necessary.Check your answer 10. ln π₯ = 8 11. log ! π₯ + 2 = 5 12. log ! 25 β π₯ = 3 13.4 + 3 log(2π₯) = 16 14. log π₯ + 2 + log(π₯ β 1) = 1 15. 5 ln(3 β π₯) = 4 16. log ! (π₯ + 2) = log ! π₯ ! 17. ln(π₯ + 5) = ln(π₯ β 1) β ln(π₯ + 1) 18. β5 + 2 ln 3π₯ = 5 19. log ! β4π β 8 = log ! π + 7 Approximate the value to 3 decimal places using CHANGE OF BASE 20. log ! 4 21 log ! 43 22. log ! 47 23 log 27 Exponential and Logarithms Test Review Condense each expression to a single logarithm. 24. 2 log ! π₯ β 4 log ! π¦ 25 5 log ! π + 15 log ! π 26. 3 log ! π₯ β 4 log ! (π₯ + 3) Expand each logarithm. 27. log ! π₯ ! π¦ 28. log ! !! 29. log ! ( ! !! ! ! ) 30. Graph each exponential function and fill out the table of important information. a) π¦ = β 3 !!! +3 b) π¦ = 2 ! ! ! β2 Parent Function: Parent Function: Translations: Translations: HA: HA: Domain: Domain: Range: Range: 31. Write the equation for the function π¦ = 4! , given the following translations: a) reflected over the x-axis b) shifted up 5 units and left 3 units c) stretched by a factor of 2 Exponential and Logarithms Test Review 32. Find the inverse of each function and tell me whether the inverse is a function: !! Function? a). π π₯ = ! π₯ β 12 b). π π₯ = 4π₯ ! + 2 ! c). π π₯ = !!!" π₯+3 e) π‘ π₯ = 5βπ₯ d(. π π₯ = (5 β π₯)! Function? Function? Function? f). π π₯ = π₯ ! β 4π₯ + 1 Function? Function? Rewrite each into logarithmic form: ! 33. 3! = 12 34. 2!! = ! 35. π ! = 15 Rewrite each into exponential form: ! 36. log !" 7 = ! 37. ln 14 = π₯ ! 38. log ! ! = β2
© Copyright 2026 Paperzz