Section 2.1 Techniques for Finding Derivatives #1-20: Use the Power rule to find the derivative of each function (write each answer with positive exponents) 1) f(x) = 3x2 + 4x β 7 2) g(x) = 2x5 β 5x3 +3x β 4 2 1 3 2 2 1 5 2 3) π¦ = π₯ 4 + π₯ + 1 4) π¦ = π₯ 3 + π₯ 2 + 21 5) π¦ = 6) π¦ = π₯2 3 π₯2 4 + 5π₯ β 4 β 3π₯ β 4 7) f(x) = 18 8) h(x) = -14 9) π¦ = 3βπ₯ 3 10) π¦ = 2 βπ₯ 4 11) π(π₯ ) = 12 βπ₯ + 3π₯ β 4 3 12) π(π₯ ) = 4βπ₯ + βπ₯ β 1 13) π(π₯ ) = 3π₯ 2β 3 14) π(π₯ ) = 2π₯ 1β 2 15) π(π₯ ) = π₯ 3β 2 β 2π₯ 1β 2 16) π(π₯ ) = π₯ 1β 2 β 2π₯ β1β 2 + 4π₯ β 1β 2 + 4π₯ β 3β 2 17) π¦ = 18) π¦ = 3 π₯2 5 π₯3 2 3 π₯ π₯2 1 4 π₯ π₯2 19) π(π₯ ) = β 20) π(π₯ ) = β + 5π₯ +π₯ #21-32: Clear the parenthesis and then find the derivative of each function. 21) y = (2x + 3)(3x β 4) 22) y = (3x β 4)(5x β 8) 23) f(x) = (x β 2)(3x β 4) 24) y = (x - 5)(3x2 + 7) 25) f(x) = (x2 + 3x +2)(3x β 5) 26) f(x) = (3x2 + 6x β 2)(4x + 1) 27) g(t) = (2t β 1)(3t + 5) 28) g(t) = (3t2 + 5t)(2t + 1) 29) y = 3x2(2x2 + 6x β 4) 30) y = 4x3(3x2 + 7x β 5) 31) f(x) = (5x2)(4x) 32) f(x) = (7x2)(6x) #33-40: Rewrite the problem without a fraction and find the derivative of each function. 33) π(π₯ ) = 34) π(π₯ ) = 35) π¦ = π₯+2 36) π¦ = π₯+2 βπ₯ 3 βπ₯ 3π₯ 2 +6π₯ 2π₯ 4π₯ 3 +5π₯ 2 +3 2π₯ 37) π(π₯ ) = 38) π(π₯ ) = 39) f(x) = 40) f(x) = π₯ 2 +5π₯+21 βπ₯ π₯ 2 +5π₯+21 3 βπ₯ 5π₯ 2 +6π₯+1 π₯ 1β2 3π₯ 2 βπ₯+1 π₯ 1β3 (There is no problem numbered 41 or 42. Iβm not sure what happened to them.)#43-52: a) Find the slope of the tangent line to the graph of the function for the given value of x. b) Find the equation of the tangent line to the graph of the function for the given value of x. 43) f(x) = 3x2 + 6x β 2; x = 2 44) f(x) = 2x2 - 6x β 2; x = 3 3 45) π(π₯ ) = 4βπ₯ + βπ₯ β 1; π₯ = 64 4 46) π(π₯ ) = 12 βπ₯ + 3π₯ β 4; π₯ = 16 1 4 π₯ π₯2 2 3 π₯ π₯2 47) π(π₯ ) = β 48) π(π₯ ) = β + π₯; π₯ = β2 + 5π₯; π₯ = β3 49) π¦ = 50) π¦ = 5 π₯3 3 π₯2 ; x=1 ; x=3 51) π(π₯ ) = π₯ 3β 2 β 2π₯ 1β 2 52) π(π₯ ) = π₯ 1β 2 β 2π₯ β1β 2 + 4π₯ β 1β 2; + 4π₯ β x=4 3β 2; x=9 #53-62: a) Find all values of x where the tangent line is horizontal b) Find the equation of the tangent line to the graph of the function for the values of x found in part a. 53) f(x) = 3x2 + 6x + 2 54) f(x) = 2x2 β 5x + 7 55) f(x) = (x-3)(3x-4) 56) f(x) = (2x-5)(x+1) 1 5 3 2 57) f(x) = π₯ 3 + π₯ 2 + 6π₯ 1 58)π(π₯ ) = π₯ 3 + 3π₯ 2 β 7π₯ 3 59) y = x3 β 5x2 +6x + 3 60) y = x3 β 4x2 -7x + 8 61) y = x3 + 3x2 62) y = 2x3 β 4x2
© Copyright 2026 Paperzz