Section 2.1 Techniques for Finding Derivatives #1

Section 2.1 Techniques for Finding Derivatives
#1-20: Use the Power rule to find the derivative of each function (write
each answer with positive exponents)
1) f(x) = 3x2 + 4x – 7
2) g(x) = 2x5 – 5x3 +3x – 4
2
1
3
2
2
1
5
2
3) 𝑦 = π‘₯ 4 + π‘₯ + 1
4) 𝑦 = π‘₯ 3 + π‘₯ 2 + 21
5) 𝑦 =
6) 𝑦 =
π‘₯2
3
π‘₯2
4
+ 5π‘₯ βˆ’ 4
βˆ’ 3π‘₯ βˆ’ 4
7) f(x) = 18
8) h(x) = -14
9) 𝑦 = 3√π‘₯
3
10) 𝑦 = 2 √π‘₯
4
11) 𝑔(π‘₯ ) = 12 √π‘₯ + 3π‘₯ βˆ’ 4
3
12) 𝑓(π‘₯ ) = 4√π‘₯ + √π‘₯ βˆ’ 1
13) 𝑓(π‘₯ ) = 3π‘₯
2⁄
3
14) 𝑔(π‘₯ ) = 2π‘₯
1⁄
2
15) 𝑓(π‘₯ ) = π‘₯
3⁄
2
βˆ’ 2π‘₯
1⁄
2
16) 𝑓(π‘₯ ) = π‘₯
1⁄
2
βˆ’ 2π‘₯
βˆ’1⁄
2
+ 4π‘₯ βˆ’
1⁄
2
+ 4π‘₯ βˆ’
3⁄
2
17) 𝑦 =
18) 𝑦 =
3
π‘₯2
5
π‘₯3
2
3
π‘₯
π‘₯2
1
4
π‘₯
π‘₯2
19) 𝑓(π‘₯ ) = βˆ’
20) 𝑓(π‘₯ ) = βˆ’
+ 5π‘₯
+π‘₯
#21-32: Clear the parenthesis and then find the derivative of each
function.
21) y = (2x + 3)(3x – 4)
22) y = (3x – 4)(5x – 8)
23) f(x) = (x – 2)(3x – 4)
24) y = (x - 5)(3x2 + 7)
25) f(x) = (x2 + 3x +2)(3x – 5)
26) f(x) = (3x2 + 6x – 2)(4x + 1)
27) g(t) = (2t – 1)(3t + 5)
28) g(t) = (3t2 + 5t)(2t + 1)
29) y = 3x2(2x2 + 6x – 4)
30) y = 4x3(3x2 + 7x – 5)
31) f(x) = (5x2)(4x)
32) f(x) = (7x2)(6x)
#33-40: Rewrite the problem without a fraction and find the derivative
of each function.
33) 𝑓(π‘₯ ) =
34) 𝑓(π‘₯ ) =
35) 𝑦 =
π‘₯+2
36) 𝑦 =
π‘₯+2
√π‘₯
3
√π‘₯
3π‘₯ 2 +6π‘₯
2π‘₯
4π‘₯ 3 +5π‘₯ 2 +3
2π‘₯
37) 𝑓(π‘₯ ) =
38) 𝑓(π‘₯ ) =
39) f(x) =
40) f(x) =
π‘₯ 2 +5π‘₯+21
√π‘₯
π‘₯ 2 +5π‘₯+21
3
√π‘₯
5π‘₯ 2 +6π‘₯+1
π‘₯ 1⁄2
3π‘₯ 2 βˆ’π‘₯+1
π‘₯ 1⁄3
(There is no problem numbered 41 or 42. I’m not sure what happened
to them.)#43-52:
a) Find the slope of the tangent line to the graph of the function for the
given value of x.
b) Find the equation of the tangent line to the graph of the function for
the given value of x.
43) f(x) = 3x2 + 6x – 2; x = 2
44) f(x) = 2x2 - 6x – 2; x = 3
3
45) 𝑓(π‘₯ ) = 4√π‘₯ + √π‘₯ βˆ’ 1; π‘₯ = 64
4
46) 𝑔(π‘₯ ) = 12 √π‘₯ + 3π‘₯ βˆ’ 4; π‘₯ = 16
1
4
π‘₯
π‘₯2
2
3
π‘₯
π‘₯2
47) 𝑓(π‘₯ ) = βˆ’
48) 𝑓(π‘₯ ) = βˆ’
+ π‘₯; π‘₯ = βˆ’2
+ 5π‘₯; π‘₯ = βˆ’3
49) 𝑦 =
50) 𝑦 =
5
π‘₯3
3
π‘₯2
; x=1
; x=3
51) 𝑓(π‘₯ ) = π‘₯
3⁄
2
βˆ’ 2π‘₯
1⁄
2
52) 𝑓(π‘₯ ) = π‘₯
1⁄
2
βˆ’ 2π‘₯
βˆ’1⁄
2
+ 4π‘₯ βˆ’
1⁄
2;
+ 4π‘₯ βˆ’
x=4
3⁄
2;
x=9
#53-62:
a) Find all values of x where the tangent line is horizontal
b) Find the equation of the tangent line to the graph of the function for
the values of x found in part a.
53) f(x) = 3x2 + 6x + 2
54) f(x) = 2x2 – 5x + 7
55) f(x) = (x-3)(3x-4)
56) f(x) = (2x-5)(x+1)
1
5
3
2
57) f(x) = π‘₯ 3 + π‘₯ 2 + 6π‘₯
1
58)𝑓(π‘₯ ) = π‘₯ 3 + 3π‘₯ 2 βˆ’ 7π‘₯
3
59) y = x3 – 5x2 +6x + 3
60) y = x3 – 4x2 -7x + 8
61) y = x3 + 3x2
62) y = 2x3 – 4x2