Graph one cycle and fill in the blanks. 1 1. y Period = _____ sec 2 x 1 2 2 Equation of Asymptotes ___________________ Three Specific Asymptotes ______________ _______________________________________________________________________________ 2. y 3cot x 6 1 Period = _____ Equation of Asymptotes ___________________ Two Specific Asymptotes ______________ _______________________________________________________________________________ 3. y Period = ____ 2csc 2x 1 Equation of Asymptotes ___________________ Three Specific Asymptotes ______________ 10 4. y 3 tan x 2 6 Period = _____ Equation of Asymptotes ___________________ Two Specific Asymptotes ______________ ___________________________________________________________________________ Write the equation for each graph. 5. Equation: ______________________________ 6. Equation: ________________________________ 11 Evaluate. 2 7. cos 3 8. tan 10. cot 2 3 13. cos 5 5 sin sin cos 6 4 6 4 14. cos 3 7 cos 4 6 5 4 9. sin 5 6 12. sec3 11. csc sin 5 3 3 7 sin 4 6 7 3 4 15. 7 1 tan tan 3 4 tan tan ________________________________________________________________________________ If 0 in radians that make each statement true. 2 , determine the values of 3 16. cos 17. tan 18. csc 3 2 2 19. cot 2 1 3 20. sec2 4 3 21. csc2 2 12 Notes on graphing inverses of sine and cosine graphs 1st Graph y = sin x 2 nd Interchange the values in the ordered pair and sketch in the graph below: angle value angle 3rd graph y value Sin 1 ( x) angle value _______________________________________________________________________________________________________ Part 2 ) Do the same as above but to the graph y = cosine x 1st Graph y = cos x 2 nd Interchange the values in the ordered pair and sketch in the graph below: angle value angle 3rd graph y Cos 1 ( x ) value angle value 13 1st 2 nd Interchange the values in the ordered pair and sketch in the graph below: Graph y = tan x angle value angle 3rd graph y tan 1 ( x) value angle value _______________________________________________________________________________________________________ Part 2 ) Do the same as above but to the graph y = cosine x 1st Graph y = cot x 2 nd Interchange the values in the ordered pair and sketch in the graph below: angle value angle 3rd graph y Cot 1 ( x) value angle value 14 INVERSE TRIG FUNCTIONS PROBLEMS NOTES TWO GROUPS BASED ON SIMILAR RANGE y = sin 1 x [ y = tan 1 x ( y = csc 1 x [ 2, 2 2 ] 2, 2 ) 2, 2 ] , y 0 2 Sample Problems 3 5 Reference Triangles 3 ex 1 sin(arctan( ) 2 cot(sin 1 ( 10 )) 10 sec(arc tan 3x) Angle Problems 4 sin 1 ( 3 ) 2 5 arc tan(-1) 6 arcsin(tan 3 ) 4 SECOND GROUP y cos 1 x [0, ] y sec 1 x [0, ] y cot 1 x (0, ) y 2 0 15 Sample Problems Reference Triangles 3 3 5 ex 1 sin(arccos( ) ) 2 sin(cos 1 ( 10 )) 10 sec(arc csc 3x) Angle Problems 4 cos 1 ( 3 ) 2 5 arc cot(-1) 6 arcsin(cos 3 ) 4 Summary of quadrant locations for inverse functions. 16 Examples: Find the exact values without using a calculator. 1. sin 1 1 = ________ 3. sin 1 1 ________ 2 5. tan 1 7. Arc csc 2 = ____________ 9. sec 1 2. 4. cos 3 = __________ 2 1 1 = __________ 2 A rccos 6. csc 1 2 3 8. sec 1 2 = ____________ 10. A rc cot 1 = _______________ 3 1 = ______________ 2 12. A rcsin sin 7 6 = __________ 14. sin 3 = ________ 2 = _____________ = __________ Find the exact value: 11. sin A rccos 13. Arc sec sec 15. sin cos 1 3 4 = _________ 16. cos A rcsin 17. tan sin 1 1 2 = _________ 18. sin tan 1( 1) = _____________ 19. cos cot 1 = ________ 20. cos A rcsin 21. sin Arc cos 3 = _________ 4 22. csc cos 23. Arccot(-1)=_______________ 24. cot 4 12 5 1 1 sin = _______________ 4 1 = _____________ 2 7 = __________ 5 13 2 9 = __________ = ____________ 3 = ___________ 17
© Copyright 2026 Paperzz