Micr o Actuator s •Electrostatic actuator - comb drive actuator •Magnetic actuator •Thermal actuator •Piezoelectric actuator •Shape memory alloy actuator •Pneumatic actuator Micr ovalve/pump Electrostatic Piezoelectric Electromagnetic Shape memory alloy Thermal bimorph Pneumatic Fundamental of Electr ostatic For ce (I) Energy in a battery-capacitance system: (II) Capacitance of flat plate: Constant Char ge Mode of Electr ostatic For ce Switch is open (i) Fixed gap Z=Z0, moving in x-direction Fx = (3) Fx = − ∂U c 1 Z 2 = ( ) q0 2 ∂X 2kε 0 WX 1 Z kε 0WX0V0 2 1 X0 2 1 2 W ( )( ) = k ε V ( )( ) ~ 0 0 2kε 0 WX2 Z 2 Z X X2 W ↑, Z ↓, q0 = C0V0=εWX0V0/Z0 (ii) Fixed X=X0 position, moving in z-direction Fz = Fz = X0 ↑ ⇒ Fx ↑ X − ∂U c −1 1 2 = ( ) q0 ∂Z 2kε 0 WX − ∂U c − 1 1 kε 0WXV0 2 1 1 2 WX = ( )( ) = kε 0V0 ( 2 ) = cons tan t ~ 2 ∂Z 2kε 0 WX Z0 2 Z0 Z0 Examples Constant Voltage Mode of Electr ostatic For ce Switch is closed (i) Fixed gap z, moving in x-direction (3) (i) Fixed x position, moving in z-direction Examples X-dir ection motion of Comb Dr ive Device Fr inged Field Cor r ection A=Xt Constant Voltage Mode with fringed field correction ε = kε 0 W=t Z=d For ce and Deflection (later al motion) Electrostatic force: 2 2µm 100µm V=15V, t=2µm, d=2µm, t/d =1, α(t/d)=2 8 combs a b t 1 t 1 Fx = Nα ( ) εV 2 = 8 × 2 × × 8.854 ×10−12 ×152 ×1 d 2 d 2 Fx = 1.6 × 10 −8 N = 0.016 µN Spring constant K(a,b,L): Ea 3b 150 ×109 ( N / m2 )(2 ×10−6 m)3 (2 ×10 −6 m) K (2,2,100) = = 4 L3 4(100 ×10 −6 m) 3 N K (2,2,100) = 0.6 m Ver y small F −8 ∆y = = 2.66 ×10 m = 0.027 µm deflection! K How to get bigger for ce fr om combs ? t 1 t Fx = Nα ( ) εV 2 d 2 d (1) Better lithography resolution d↓, t/d↑, Fx ↑ (2) High aspect ratio structure (for example: LIGA) t ↑, t/d↑, Fx ↑ (3) Submicron device: (4) Leverage structure: Z-dir ection motion of Comb Dr ive Device Fr inged Field Cor r ection t 1 Wt t 1 t X Fz ( d ) = − Nα ( ) kε 0V 2 ( 2 ) = − Nα ( ) εV 2 ( )( ) d 2 d d 2 d d d x Ex1: V=15V, t=2µm, d=2µm, t/d =1, α(t/d)=2, 8 combs t 1 t X 1 Fz = − Nα ( ) εV 2 ( )( ) = −8 × 2 × × 8.854 ×10 −12 ×152 ×1× 5 = −1.6 ×10 −8 × 5 N = −0.08µN d 2 d d 2 Ex2: X=10µm, K= 1 N/m, calculate voltage V for 1 µm deflection Fz = − K • ∆z = −1µN t 1 t X 1 Fz ( d ) = − Nα ( ) εV 2 ( )( ) = −8 × 2 × × 8.854 × 10 −12 × V 2 ×1× 5 = −1µN d 2 d d 2 V = 53volt y0 x unstable Spr ings for Folded Beams 2 2 µ m 100µm ab Ea 3b K0 (a , b, L) = 4 L3 K = 4 K0 Folded Beams K = 8K0 Linear Resonator m Ea 3b K = 4 K0 = 3 = 2.4 N / m L m = ρAt = ( 2.3 × 103 kg / m3 )(100 × 10 −6 m) 2 (2 × 10 −6 m) = 4.6 × 10 −11 kg ω= f= K 2.4 N / m = = 228416 m 4.6 × 10 −11 kg ω = 36 KHz 2π Metal Poly0 Poly1 Homework #3 Magnetic For ce on a Cur r ent-car r ying Conductor r r r F = IL × B Magnetic Field of a Solenoid For ce on a Cur r ent Loop in a unifor m magnetic Field For ce on a Cur r ent Loop in a Solenoid Magnetic Micr oflap Poly1 Metal coil
© Copyright 2026 Paperzz