Physics140 Temperatureandidealgas Chapter13 Physics140,Prof.M.Nikolic So,whatistemperature? 2 Temperature Temperatureisthemeasurehowwarm(hotorcold)isthemaDer (solid,liquid,gas,orplasma) ButhowamItoknowhowhotorcoldissomething? Well,onewaytounderstandthetemperatureisbyintroducingheat. Physics140,Prof.M.Nikolic 3 Heatandtemperature Heatisthetransferofenergyfromonebodytoanotherdueto thetemperaturedifference. Twoobjectsthathavethesame temperatureareinthermalequilibrium. Heatalwaysflowsfromabodywith highertemperaturetoabodywith lowertemperature. Iftwoobjectsareeachinthermalequilibriumwithathirdobject, thenthetwoobjectsareinthermalequilibriumwitheachother. Physics140,Prof.M.Nikolic 4 Temperaturescales Temperatureismeasuredwiththermometers. Absoluteor Fahrenheitscale Kelvinscale Celsiusscale Waterboils 373.15K 2120F 1000C Waterfreezes 273.15K 320F 00C Absolutezero 0K -459.670F -273.150C Valuesaregivenat1atmosphereofpressure. • FromCelsiustoKelvinscale T = TC + 273.15 • FromCelsiustoFahrenheitscale TF = (1.8 o F/ oC) TC + 32 o F Physics140,Prof.M.Nikolic 5 Exercise:Temperaturescales (a)Atwhattemperature(ifany)doesthenumericalvalueofCelsiusdegreesequal thenumericalvalueofFahrenheitdegrees? TF = 1.8TC + 32 = TC 1.8TC −TC = −32 0.8TC = −32 TC = −40 o C = -40o F (b)WhatisthistemperatureinKelvins? T = TC + 273.15 T = −40 o C + 273.15 = 233.15 K Physics140,Prof.M.Nikolic 6 Thermalexpansionofsolidsandliquids Mostmaterialsexpandwhentemperatureisincreased. ΔL = αΔT L0 αisthecoefficientof linearthermalexpansion ΔL = L − L0 ΔT = T − T0 L0isthelengthoftheobjectata temperatureT0. L = (1 + αΔT )L0 TemperatureisgiveninKelvins. Physics140,Prof.M.Nikolic 7 Exercise:Aluminumbar Abarofaluminummeasures4.500mlongatatemperatureof20oC.Howshortcanit beandhowlongcanitbeoveratemperaturerangeof-15oCto35oC?Coefficientfor linearthermalexpansionofaluminumisα=23x10-6K-1. Whatisgiven: L = (1 + αΔT )L0 L0=4.5m T0=20oC T1=-15oC T2=35oC α=23x10-6K-1 Forarela8vechangeoftemperatureyoudonotneedtoconvert temperaturegiveninCelsiusscaletoKelvinscale: ΔT = T − T0 = TC + 273.15 − (TC 0 + 273.15) = TC − TC 0 ( ) AtT=-150C: L1 = 1 + 23 ×10−6 K -1 (−15 − 20) ⋅ 4.5 m = 4.497 m ( ) AtT=350C: L2 = 1 + 23 ×10−6 K -1 (35 − 20) ⋅ 4.5 m = 4.501 m Physics140,Prof.M.Nikolic 8 Thermalexpansion TheGreatMolassesFloodof1917 • • • • ExpansionJoints:bridgesandroads Matchingmaterials:glassandwireinlightbulbs Powerlinessagonhotdays Heatjarlidstoopenjars Physics140,Prof.M.Nikolic 9 Thermalexpansion Intwodimensions–areaexpansion ΔA = 2αΔT A0 αisthecoefficientof linearthermalexpansion Inthreedimensions–volumeexpansion ΔV = βΔT V0 Physics140,Prof.M.Nikolic βisthecoefficientof volumethermalexpansion β = 3α 10 Atomicstructure Atomicmass(A)–totalmassofanatom a) Electrons–smallmass→negligiblecontribugon b) Protons c) Neutrons Atomshavesosmallmassthatitishardtoexpresstheirmassin gramsandkilograms→atomicmassunit(symbolu) -1nucleon(protonorneutron)→massof1u 1 u = 1.66 ×10−27 kg Atomicmassunitisdefinedas1/12ofthemassofacarbon-12(12C) Example:Atomicmassofcarbon-12–A(C)=12u Atomicmassofoxygen-16–A(O)=16u Physics140,Prof.M.Nikolic 11 Atomicmass Physics140,Prof.M.Nikolic 12 Molecularstructure In12gofCarbon-12thereis 6.022x1023atomsèAvogadro’snumber(NA) TheamountofsubstancethatcontainsAvogadro’snumberofpargcles isdefinedasaMOLEofthesubstance(n). N = n ⋅ NA N–numberofpargcles NA=6.022x1023mol-1 Molarmassofamoleculeisthesumoftheatomicmasses(u)ofallthe atomsinamolecule. Example:MolarmassofCO2–A(C)+2A(O)=12u+2x16u=44u Physics140,Prof.M.Nikolic 13 Molecularstructure Ifeachmoleculehasamassm,thanthenumberofmoleculesis M N= m Misatotalmass misamassofonemolecule m=Molarmassx1.66x10-27kg Theatomicmassunitischosensothatthemassofamoleculein“u”isnumerically thesameasthemolarmassin“g/mol” Numberdensity–numberofmoleculespackedintoagivenvolume: N M ρ = = V mV m ρisthemassdensity Physics140,Prof.M.Nikolic 14 Exercise:Molecules Acarbondioxide(CO2)ofvolume0.10m3contains4.5molifCO2.Findthenumber ofmolecules,thenumberdensityandthemassdensityofCO2. Whatisgiven: V=0.1m3 n=4.5mol NA=6.022x1023mol-1 Numberofpargcles: N = n ⋅ NA N = 4.5 mol ⋅ 6.022 ×10 23 mol-1 = 27 ×10 23 molecules 24 N 2 . 7 × 10 molecules 25 -3 Numberdensity: = = 2 . 7 × 10 m V 0.1 m3 Massdensity: N M ρ = = V mV m ρ= N N molar mass m= V V NA 44 ×10−3 kg/mol 3 ρ = 2.7 ×10 m ⋅ = 1 . 98 kg/m 6.022 ×10 23 mol-1 25 Physics140,Prof.M.Nikolic -3 15 Pleasecompletethecourse evaluagonforthisclass! Iknowyoudonothavetobutwealwaysappreciate feedbackJ Physics140,Prof.M.Nikolic 16 Absolutetemperature Experimentalresultsshowedthatattheconstantpressure(thatisnottoo high),thevolumeofgasincreaseswiththetemperatureatnearlyconstantrate V ∝T Charles’Law • Allgasesliquefyatlowtemperaturessonoexperimentaldataavailable forlowtemperatures • Extrapolate! T=-273.150C=0K isthelowestpossibletemperatureorABSOLUTEZEROtemperature. Physics140,Prof.M.Nikolic 17 Theidealgaslaw Experimentsdoneondilutegases(agaswhereinteracgonsbetweenmoleculescan beignored)showthat: Forconstantpressure V ∝T Charles’Law Forconstantvolume P ∝T Gay-Lussac’sLaw Forconstanttemperature 1 P∝ V Boyle’sLaw Forconstantpressureand temperature V∝N Avogadro’sLaw Physics140,Prof.M.Nikolic 18 Theidealgaslaw Theidealgaslawinmicroscopicform: PV = NkT k=1.38x10-23J/Kis Boltzmann’sconstant Since N = n ⋅ N A Theidealgaslawinmacroscopicform: PV = nRT R=NAk=8.31J/Kisthe universalgasconstant Physics140,Prof.M.Nikolic 19 Exercise:Carengine AcylinderinacarenginetakesVi=4.50x10-2m3ofairintothechamberat300Cand atatmosphericpressure.Thepistonthencompressestheairtoone-ninthofthe originalvolumeandto20.0gmestheoriginalpressure.Whatisthenewtemperature oftheair? Whatisgiven: Vi=4.5x10-2m3 Ti=30oC Pi=Patm Vf=Vi/9 Pf=20Pi PV = nRT Inigal: PiVi = nRTi TemperatureneedstobeconvertedtoKelvins: Ti=30+273=303K n= PiVi RTi 1.013⋅10 5 Pa ⋅ 4.5⋅10 −2 m 2 n= = 1.81 mol 8.31⋅ 303K Numberofairmoleculesandnumberofmolesstaysthesame. Final: Pf V f = nRTf Physics140,Prof.M.Nikolic Pf V f Tf = nR 4.5⋅10 −2 m 2 20 ⋅1.013⋅10 Pa ⋅ 9 Tf = = 673 K 1.81mol ⋅ 8.31J / K 5 20 Exercise:Carengine–differentapproach AcylinderinacarenginetakesVi=4.50x10-2m3ofairintothechamberat300Cand atatmosphericpressure.Thepistonthencompressestheairtoone-ninthofthe originalvolumeandto20.0gmestheoriginalpressure.Whatisthenewtemperature oftheair? Whatisgiven: Vi=4.5x10-2m3 Ti=30oC Pi=Patm Vf=Vi/9 Pf=20Pi TemperatureneedstobeconvertedtoKelvins: Ti=30+273=303K PV = nRT Inigal: PiVi = nRTi Final: Pf V f = nRTf Let’sfindtherago: Pf V f nRTf Tf = = PiVi nRTi Ti Physics140,Prof.M.Nikolic Tf = Pf V f PiVi Ti Tf = Vi 9 303 K = 20 303 K = 673 K PiVi 9 (20 Pi ) 21 Conceptualquesgon–Idealgas Q1 Achambercontainsagasatconstantvolume.Ifthequangtyofgasisdoubled,then whichofthefollowingbestdescribeswhatwouldoccur? A. B. C. D. Thepressureincreasesbyafactorof2. Thetemperatureincreasesbyafactorof2. (PressurexTemperature)increasesbyafactorof2. (Pressure/Temperature)increasesbyafactorof2. PV = nRT Physics140,Prof.M.Nikolic 22 Kinegctheoryofgases ConsiderasinglegasmoleculemovingwithinacubewithsidesoflengthL: Thepressureinthegasis 2N P= K tr 3V Where<Ktr>istheaveragetranslagonal kinegcenergyofasinglepargcle L K tr L L ForNpargclesè“internalenergy” U = N K tr Physics140,Prof.M.Nikolic 3 = k BT 2 3 3 = NkBT = nRT 2 2 25 Averagetranslagonalkinegcenergy FromChapter6weknowthattranslagonalkinegcenergyisequalto K tr 1 1 2 2 = m v = mvrms 2 2 vrmsistherootmeansquare(rms)speed–howfastaremolecules movingonaverage vrms = v2 Notanaveragespeedofmolecules! 3 1 2 K tr = kBT = mvrms 2 2 3kBT vrms = m Physics140,Prof.M.Nikolic 26 Exercise:Nitrogengas A2molofnitrogengas(N2)areplacedinacubicbox,25cmineachside,at1.6atm ofpressure. a)Whatisthermsspeedofnitrogenmolecules? Whatisgiven: n=2mol Side=25cm=0.25m P=1.6atm=1.6x1.013x105Pa 3kT vrms = m m = molar mass ×1.66 ×10 -27 kg m = 2 ⋅14 u ×1.66 ×10 -27 kg = 46.48 ×10 -27 kg Temperaturecanbefoundfromtheidealgasequagon: PV = nRT Volumeofthecubicbox:V=(0.25m)3=0.0156m3 PV 1.6 ×1.013×10 5 Pa ⋅ 0.0156 m 3 T= = = 155.5 K nR 2 mol⋅8.13 Physics140,Prof.M.Nikolic 27 Exercise:Nitrogengas A2molofnitrogengas(N2)areplacedinacubicbox,25cmineachside,at1.6atm ofpressure. a)Whatisthermsspeedofnitrogenmolecules? Whatisgiven: n=2mol Side=25cm=0.25m P=1.6atm=1.6x1.013x105Pa Andwefound m=4.67x10-26kg T=155.7K 3kT vrms = m 3⋅1.38 ×10 −23 ⋅155.5 vrms = = 372.2 m/s 46.48 ×10 −27 b)Whatistotalinternalenergy? U = N K tr 3 3 = NkT = nRT 2 2 3 U = 2 mol⋅8.13⋅155.5 K = 3793 J 2 Physics140,Prof.M.Nikolic 28 Temperatureandreacgonrates ThedistribugonofspeedsinagasisgivenbytheMaxwell-BoltzmannDistribu8on. Ac8va8onenergy(Ea)istheminimum kinegcenergyofthereactantsnecessaryfor achemicalreacgontoproceed. If 3 Ea >> kT 2 thenonlymoleculesinthehighspeedtailof Maxwell-Boltzmanndistribugoncanreact. reaction rates ∝ e Physics140,Prof.M.Nikolic −⎛⎜ ⎝ Ea ⎞ kT ⎟⎠ 29 Meanfreepath Gaspargclescananddocollidewitheachother,unlikewhatwehaveintheideal gasmodel.Wecanroughlycalculatehowfartheytravelbeforecollidingwith anotherpargcle. Onaverage,agaspargclewillbeabletotraveladistance Λ= 1 2 2πd (N / V ) d–isthediameterofthepargcle beforecollidingwithanotherpargcle.Thisisthemeanfreepath. Λ Timebetweencollisions t = vrms Physics140,Prof.M.Nikolic 30 Diffusion Substanceswillmovefromareasofhighconcentragontoareas oflowerconcentragon.Thisprocessiscalleddiffusion. Inagmet,thermsdisplacementinonedirecgonis: xrms = 2Dt Physics140,Prof.M.Nikolic Disthediffusionconstant 31 Exercise:Diffusion Esgmatethegmeittakesasucrosemoleculetomove5.00mminonedirecgonby diffusioninwater.Assumethereisnocurrentinthewater. Whatisgiven: xrms=5mm=0.005m xrms = 2Dt Diffusionconstantofsucrosecanbe foundinTable13.4inourtextbook: D=5x10-10m2/s Squarebothsidesoftheequagon 2 xrms = 2 Dt 2 xrms t= 2D (5.00 ×10 t= 2(5.0 ×10 −3 2 ) m = 25000 s −10 m 2 /s Physics140,Prof.M.Nikolic ) 32 Exercise:Meanfreepath Λ= 1 2πd 2 (N / V ) Whatistheaveragegmebetweencollisionsamongairpargclesatatemperatureof 20oCandatmosphericpressure?Thelengthofanairmoleculeisaround0.14nmand themassofanairmoleculeis4.796x10-26kg. Λ= Λ t= vrms 1 2πd 2 (N / V ) 3⋅1.38⋅10 −23 ⋅ 293 vrms = = 503m / s 4.796 ⋅10 −26 3kT vrms = m Fromtheidealgaslaw PV = NkBT Λ= 1 2 2πd (N / V ) Physics140,Prof.M.Nikolic Λ= N P = V k BT N 101300Pa = V 1.38⋅10 −23 J / K ⋅ (20 0 + 273)K N = 250.53⋅10 23 Pa / J V 1 = 4.57 ⋅10 −7 m −9 2 23 2 ⋅ 3.14 ⋅ (0.14 ⋅10 ) ⋅ 250.53⋅10 4.57 ⋅10 −7 t= = 9.11⋅10 −10 s 503 33 Review FromCelsiustoKelvinscale Molecularstructure T = TC + 273.15 N = n ⋅ NA FromCelsiustoFahrenheitscale TF = (1.8 F/ C) TC + 32 F o o o M N= m N M ρ = = V mV m Idealgasequagon Thermalexpansion Linearexpansion PV = NkT L = (1 + αΔT )L0 PV = nRT Areaexpansion ΔA = 2αΔT A0 Physics140,Prof.M.Nikolic Volumeexpansion ΔV = βΔT V0 β = 3α 34 Review Meanfreepath 2N P= K tr 3V Λ= 3 K tr = kBT 2 U = N K tr 3 1 2 K tr = kBT = mvrms 2 2 3kBT vrms = m Physics140,Prof.M.Nikolic 2πd 2 (N / V ) Timebetweencollisions 3 3 = NkBT = nRT 2 2 reaction rates ∝ e 1 −⎛⎜ ⎝ Ea t= Λ vrms Rmsdisplacement xrms = 2Dt ⎞ kT ⎟⎠ 35
© Copyright 2026 Paperzz