Area and Estimating with Finite Sums

Area and Estimating with Finite
Sums
Part 1
Problem:
Find the area of a region 𝑅 bounded below by the π‘₯axis, on the sides by the lines π‘₯ = π‘Ž and π‘₯ = 𝑏, and
above by a curve 𝑦 = 𝑓 π‘₯ , where 𝑓 is continuous on
π‘Ž, 𝑏 and 𝑓 π‘₯ β‰₯ 0 for all π‘₯ in π‘Ž, 𝑏
First Step: Subdivide π‘Ž, 𝑏 into 𝑛
subintervals of equal width of βˆ†π‘₯
Second Step: On each subinterval, draw a rectangle to
approximate the area of the curve over the subinterval
Third Step: Determine the area of each
rectangle
β€’
β€’
β€’
Width of the k-th rectangle = βˆ†π‘₯
Height of k-th rectangle = 𝑓 π‘π‘˜
Area of k-th rectangle = π΄π‘˜ = 𝑓 π‘π‘˜ βˆ™ βˆ†π‘₯
Fourth Step: Sum up the areas of the rectangles
to approximate the area under the curve
= 𝑓 𝑐1
𝐴 β‰ˆ 𝐴1 + 𝐴2 + 𝐴3 + β‹― + 𝐴𝑛
βˆ™ βˆ†π‘₯ + 𝑓 𝑐2 βˆ™ βˆ†π‘₯ + 𝑓 𝑐3 βˆ™ βˆ†π‘₯ + β‹― + 𝑓 𝑐𝑛 βˆ™ βˆ†π‘₯
Upper sum method: π‘π‘˜ , 𝑓 π‘π‘˜ is the absolute
maximum of 𝑦 = 𝑓 π‘₯ on the π‘˜-th subinterval
Lower sum method: π‘π‘˜ , 𝑓 π‘π‘˜ is the absolute
minimum of 𝑦 = 𝑓 π‘₯ on the π‘˜-th subinterval
Midpoint method: π‘π‘˜ is the midpoint
of the π‘˜-th subinterval
Right endpoint method: π‘π‘˜ is the right
endpoint of the π‘˜-th subinterval
Left endpoint method: π‘π‘˜ is the left
endpoint of the π‘˜-th subinterval
Example 1
Use finite approximation to estimate the area
under 𝑓 π‘₯ = 3π‘₯ + 1 over 2,6 using a lower
sum with four rectangles of equal width.
Solution:
𝑓 π‘₯ = 3π‘₯ + 1
π‘Ž = 2 and 𝑏 = 6
𝑛=4
Example 1 (continued)
𝑓 π‘₯ = 3π‘₯ + 1 over 2,6
width of the interval π‘Ž, 𝑏
βˆ†π‘₯ =
number of subintervals
π‘βˆ’π‘Ž
=
𝑛
6βˆ’2
βˆ†π‘₯ =
=1
4
Note: in this example, the lower
sum method is the same as the
left endpoint method
Example 1 (continued)
𝑓 π‘₯ = 3π‘₯ + 1 over 2,6
Example 1 (continued)
𝑓 π‘₯ = 3π‘₯ + 1 over 2,6
𝐴 β‰ˆ 𝑓 𝑐1 βˆ™ βˆ†π‘₯ + 𝑓 𝑐2 βˆ™ βˆ†π‘₯
+ 𝑓 𝑐3 βˆ™ βˆ†π‘₯ + 𝑓 𝑐4
βˆ™ βˆ†π‘₯
𝐴 β‰ˆπ‘“ 2 βˆ™1+𝑓 3 βˆ™1+ 𝑓 4
βˆ™1+ 𝑓 5 βˆ™1
𝐴 β‰ˆ 7 + 10 + 13 + 16 = 46
Answer: The area under the
curve 𝑦 = 3π‘₯ + 1 over the
interval 2,6 is approximately 46.
Example 2
Using the midpoint rule, estimate the area
1
under 𝑓 π‘₯ = over 1,9 using four rectangles.
Solution:
π‘₯
1
𝑓 π‘₯ =
π‘₯
π‘Ž = 1 and 𝑏 = 9
𝑛=4
Example 2 (continued)
1
𝑓 π‘₯ = over 1,9
width of the interval π‘Ž, 𝑏
βˆ†π‘₯ =
number of subintervals
π‘βˆ’π‘Ž
=
𝑛
9βˆ’1
βˆ†π‘₯ =
=2
4
π‘₯
Example 2 (continued)
1
𝑓 π‘₯ = over 1,9
π‘₯
Example 2 (continued)
1
𝑓 π‘₯ = over 1,9
π‘₯
𝐴 β‰ˆ 𝑓 𝑐1 βˆ™ βˆ†π‘₯ + 𝑓 𝑐2 βˆ™ βˆ†π‘₯ + 𝑓 𝑐3
βˆ™ βˆ†π‘₯ + 𝑓 𝑐4 βˆ™ βˆ†π‘₯
𝐴 β‰ˆπ‘“ 2 βˆ™2+𝑓 4 βˆ™2+ 𝑓 6 βˆ™2
+ 𝑓 8 βˆ™2
1
1
1
1
25
π΄β‰ˆ βˆ™2+ βˆ™2+ βˆ™2+ βˆ™2=
2
4
6
8
12
1
Answer: The area under the curve 𝑦 =
π‘₯
over the interval 1,9 is approximately
25
.
12
msmerry.weebly.com