one day rev 2017.notebook a. cos(-π/6) = May 05, 2017 b. sec(π/4) = c. sin(5π/6) = one day rev 2017.notebook May 05, 2017 Use the sum or difference formulas to evaluate cos(15 ). Sum and difference identities cos(α+β) = cosαcosβ-sinαsinβ cos(αβ) = cosαcosβ+sinαsinβ sin(α+β) = sinαcosβ+cosαsinβ sin(αβ) = sinαcosβ-cosαsinβ A point on the terminal side of angle θ is (4,7). Find the exact value of sinθ, cosθ and tanθ. sin(tan-1(5/12)) = sin(cos-1(15/17)) one day rev 2017.notebook May 05, 2017 y = sinθ π 2 π 3π 2 2π y= cosθ π 2 π 3π 2 2π Determine the amplitude and phase shift for each equation. y = 3sin(x-π) y = -2cos(x+π/3) one day rev 2017.notebook May 05, 2017 28° 42° 40" x Angles of elevation and depression. one day rev 2017.notebook May 05, 2017 Identities simplify a. cscx sinx sin2x + cos2x = 1 tan2x + 1 = sec2x b. sin2x + cos2x + 5 1 + cot2x = csc2x c. cosx(1 + tan2x) Solve over the interval [0,2π). a. 2cosθ + 1 = 0 b. sinθ = 0 Find all solutions for part a. a. one day rev 2017.notebook May 05, 2017 Find x in each figure. 5 70 6 x 8 x 50 10 review worksheet
© Copyright 2026 Paperzz