one day rev 2017.notebook

one day rev 2017.notebook
a. cos(-π/6) =
May 05, 2017
b. sec(π/4) =
c. sin(5π/6) =
one day rev 2017.notebook
May 05, 2017
Use the sum or difference formulas to evaluate
cos(15 ).
Sum and difference identities
cos(α+β) = cosαcosβ-sinαsinβ
cos(α­β) = cosαcosβ+sinαsinβ
sin(α+β) = sinαcosβ+cosαsinβ
sin(α­β) = sinαcosβ-cosαsinβ
A point on the terminal side of angle θ is (4,7).
Find the exact value of sinθ, cosθ and tanθ.
sin(tan-1(5/12)) =
sin(cos-1(15/17))
one day rev 2017.notebook
May 05, 2017
y = sinθ
π
2
π
3π
2
2π
y= cosθ
π
2
π
3π
2
2π
Determine the amplitude and phase shift for each
equation.
y = 3sin(x-π)
y = -2cos(x+π/3)
one day rev 2017.notebook
May 05, 2017
28°
42°
40"
x
Angles of elevation and depression.
one day rev 2017.notebook
May 05, 2017
Identities
simplify
a. cscx sinx
sin2x + cos2x = 1
tan2x + 1 = sec2x
b. sin2x + cos2x + 5
1 + cot2x = csc2x
c. cosx(1 + tan2x)
Solve over the interval [0,2π).
a. 2cosθ + 1 = 0
b. sinθ = 0
Find all solutions for part a.
a.
one day rev 2017.notebook
May 05, 2017
Find x in each figure.
5
70
6
x
8
x
50
10
review worksheet