Derivative Exercise: dy , as appropriate: 1. Find f 0 (x), or dx a. f (x) = 3 b. f (x) = 4x + 1 c. f (x) = −2x2 − 3x + 1 3x3 4 √ e. f (x) = x − 1 √ √ √ f. f (x) = − x5 + 3 x3 + 7 x d. f (x) = g. y = sin x h. f (x) = sin 3π 4 i. f (x) = ex j. f (x) = e k. f (x) = 3xex l. f (x) = 3x sin x + sin x cos x m. f (x) = 3x2 ex + 4x tan x n. f (x) = sin x cos xex o. y = 3x2 sin x cos xex 3ex − sin x p. y = cos x − 4ex √ x+1 q. y = 3x − 4 3ex − sin x r. y = cos x − 4ex 9x2 ex + 4x cos x √ s. y = 2 sin x + xex t. y = ex sin x − x cos x 3x cos x + 4xex u. y = (4x + 3)3 v. y = (x2 − 3x − 2)5 √ w. f (x) = 4x3 − 2x2 + 4x + 5 x. f (x) = sin(4x) y. f (x) = e3x−1 z. f (x) = sin(3x2 + 1) aa. f (x) = cos(sin(4x − 2)) bb. y = sin(e3x ) cc. y = ex 2 dd. y = sin3 x ee. y = cos4 (x2 + 1) 2 ff. y = ecos x−1 gg. f (x) = tan3 e2x−1 hh. f (x) = cos(2x3 − 4)ecos x ii. f (x) = x tan(x2 + 1)e3x 2 jj. f (x) = x2 esin x + ex sin(cos(3x − 1)) 2 e + 3xex −2 kk. y = e − 4 sin x cos2 x 2 2x cos(x2 − 4x) + e3x −1 ll. y = 2 3x − 4e3x cos2 (4x+1) + sin3 (5x + 1) mm. y = arccos x oo. y = ln x pp. y = ln(x2 + 4x − 1) qq. y = arcsin(x2 − 5x + 1) 1 x ss. y = ln(ln x) rr. y = ln 1 ln x uu. y = arctan2 (ln 3x) tt. y = vv. y = ln(3x) sin(ln x2 ) ww. y = 3e4x sin−1 (3x2 + 1) ln x sin 5x + 3x2 cos2 x 2. Find the equation of the line tangent to the given function f at the given point x = a: a. f (x) = 2, a = 3 b. f (x) = 5x − 1, a = −2 c. f (x) = x2 − 2x + 4, a = 1 π d. f (x) = sin x, a = 6 e. f (x) = ln x, a = 3 f. f (x) = e3x , a = −2 g. f (x) = xex − ln 4x, a = 1 3. a. Define a function that has a left and right handed limit at a point a, but f does not have a limit at a. b. Define a function that has a limit at a point b but is undefined at b. c. Define a function that has a limit at point c, is defined at c, but is discontinuous at c. d. Define a function that is continuous at point d but is not differentiable at d. e. Define a function that is first differentiable at point p but is not second differentiable at point p. f. Draw the graph of a function which has all of the properties in a, b, c, d, e, above. 4. Think About: a. Given the graph of the original function f (x), how can you draw the graph of its derivative, f 0 (x)? b. Given the graph of the derivative of a function, f 0 (x), how can you draw the graph of the original function, f (x)? dy by implicite differentiation: dx a. y sin x = x cos y 5. Find b. x2 y + y 2 x = 5 c. 2y − 4x sin x = ey x d. ln(xy) + = 1 y e. exy + ln(x + y) = 2xy 6. Find f 00 (x) and f 000 (x): a. f (x) = 4 b. f (x) = 3x2 c. f (x) = ex d. f (x) = sin x e. f (x) = ln x f. f (x) = arccos x g. f (x) = x2 + 1 x−1 h. f (x) = esin x √ i. f (x) = x j. f (x) = x5/4 7. Find the linearization of the given function at the given point a: a. f (x) = 2x − 3, a = 2 b. f (x) = 2x − 3, a = 4 c. f (x) = 2x − 3, a = 10 d. f (x) = 4x2 − x + 3, a = −1 e. f (x) = sin x, a = 0 π f. f (x) = cos x, a = 4 x g. f (x) = e , a = 0 h. f (x) = ex , a = 1 i. f (x) = ln x, a = 1 j. f (x) = ln x, a = 2 k. f (x) = arctan x, a = 0
© Copyright 2026 Paperzz