Trakia Journal of Sciences, Vol. 12, Suppl. 1, pp 70-73, 2014 Copyright © 2014 Trakia University Available online at: http://www.uni-sz.bg ISSN 1313-7050 (print) ISSN 1313-3551 (online) ALOMETRIC RELATIONSHIPS BETWEEN THE BODY-MASS INDEX, MASS TO SURFACE RATIO AND THE LENGTH OF PREGNANCY IN SOME MAMMALS (Metatheria and Placentalia) A. Atanasov1*, M. Todorova2, D. Valev3, R. Todorova4 1 Department of Physics and Biophysics, Faculty of Medicine, Trakia University, Stara Zagora, Bulgaria 2 Department of Obstetrics and Gynecology, Faculty of Medicine, Trakia University, Stara Zagora, Bulgaria 3 Space Research and Technology Institute, Stara Zagora, Departments, Bulgarian Academy of Sciences, Bulgaria 4 Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia ABSTRACT Body mass index (BMI) is characteristics in human physiology represented by the ratio between the body mass and the square of body height, i.e. BMI = Mass/Height 2. In the case of animals (mammals) the BMI can be defined by the length of the body i.e. BMI = Mass/Legth 2. In manuscript is showed existence of relationship between the body mass M(kg), length L(m), surface S(m 2), body mass to surface ratio M/S (kg/m2 ) as well as body mass index BMI(kg/m2) and the length of pregnancy T (days). Key words: body mass index, length, surface, pregnancy, human, veterinary medicine. INTRODUCTION Body mass index (BMI) is a physiological characteristics represented by the ratio of body mass and the square of body height, i.e. BMI = Mass/Height2. Body mass index is characteristics often used for purpose of diagnostics in Human medicine (1). But BMI is not well developed like prognostic characteristics in Veterinary medicine. In case of mammals the BMI can be defined by the length of the body i.e. BMI = Mass/Legth2. The field of Veterinary medicine contained wide spectrum of animals (Poikilotherms, Mammals and Aves) with wide spectrum of characteristics: body mass, length and lifetime characteristics (lifespan, length of pregnancy, during puberty, during excretion of drugs) that differs some orders of magnitude between them. However, the connection between BMI and these characteristics is not study. The aim of the work is to investigate the alometric _________________________________ *Correspondence to: Atanas Todorov Atanasov, Medical Faculty, Dept. Physics and Biophysics,Trakia University, Armeiska Str. 11, Stara Zagora, BULGARIA, E-mail: [email protected] 70 relationship between the body mass, body length, body surface, body mass to surface ratio and the body mass index and the length of pregnancy in Mammals. MATERIALS AND METHODS The data for the 103 studied mammal species Metatheria and Placentalia (from Common shrew to Killer whale), their body mass, body length and pregnancy length were collected from the review papers (2-5). The body surface S (m2) were calculated by formula S=0.1M0.67, where the body mass M is given in kg (6, 7).The body length of animals H (m) was given to be from head to tail i.e. the length of head plus length of spinal cord, without length of the tail. RESULTS The relationships between the body mass M (kg), square of body length H2 (m2), body length H (m), body surface S (m2), body mass to surface ratio M/S (kg/m2) and body-mass index M/H2) as a function of length of pregnancy T(d) are given on Table 2. On Figure 1 are compared relationships of BMI, M/S ratio as functions of the length of pregnancy T. Trakia Journal of Sciences, Vol. 12, Suppl. 1, 2014 ATANASOV A., et al. Table 1.. Experimental and calculated data for Mammals. Animals M (kg)* Tpr (d)* S (m2) 1. Sorex araneus 2. Mus musculus 3. Cricetulus migratorius 4. Myomimus personatus 5. Mustela nivalis 6.Rattus rattus 7.Chinchilla laniger 8.Rattus norvegicus 9.Cricetus cricetus 10.Gavia porcellus 11.Sciurus vulgaris 12.Mustela lutreola 13.Erinaceum europaeus 14.Ondatra zibethica 15.Citellus major 16.Mustela vison 17.Lepus tolai 18.Marmota bobac 19.Lepus europaeus 20.Lepus timidis 21.Felis libyca 22.Felis silvestris 23.Alopex lagopus 24.Marmota marmota 25.Urocyon cinereoargentus 26.Myocastor coypus 27.Felis familiaris 28.Dasypus novemcinctus 29.Vulpes vulpes 30.Nyctereutes procyonoides 31.Procyon lotor 32.Canis aureus 33.Hylobacter lar 34.Canis latrans 35.Capreolus capreolus 36.Gulo gulo 37.Lynx lynx 38.Gazella subgutturosa 39.Rupicapra rupicapra 40.Capra aegagrus 41.Panthera pardus 42.Canis lupus 43.Ovis aries 44.Pan troglodytes 45.Homo sapiens 46.Saiga tatarica 47.Canis lupus 48.Ovis orientalis 49.Delphinus delphis 50.Canis familiaris 51.Crocuta crocuta 52.Macropus rufus 53.Panthera pardus 54.Dama dama 55.Zalophus californianus 56.Felis concolor 57.Sus scrofa 58.Ovis ammon 59.Capra falconeti 60.Capra ibex 61.Tursiops truncatus 0.008-0.015 0.021 0.021 0.024-0.025 0.1 0.20-0.35 0.30-0.60 0.384 0.40-0.50 0.51 0.18-1.0 1 0.7-1.0 0.95 1.05 1.5 3.0-4.0 4.5-6.0 4.0-5.0 3.0-5.0 5 6 6 4.0-8.0 7 up to 6 up to 6 6 6-10 20 19-20 20 20-25 54 20-24 108-112 21-22 30 68 38-44 42-46 49 25 30 34-78 50 30 44 47-55 60 63 52 35 63 130 60-63 120 49-58 5.00×10-3 7.514×10-3 7.514×10-3 8.33×10-3 0.0214 0.0421 0.0585 0.0526 0.0586 0.0637 0.0702 0.1 0.0897 0.0966 0.103 0.312 0.231 0.304 0.274 0.253 0.294 0.332 0.332 0.332 0.372 0.332 0.332 0.332 0.403 M/S (kg/m2) 2.3 2.795 2.795 2.941 4.673 6.535 7.7 7.3 7.68 8 8.4 10 9.48 9.83 10.1 11.43 15.12 17.28 16.43 15.8 17 18.06 18.06 18.06 18.81 18.06 18.06 18.07 19.86 6-10 7-8 7-13 10 13 20-37 30 32 33 25-45 up to 38 32-40 32-50 49 70 60 60 up to 65 46-79 53 65 59-82 80-150 75 100 100 up to 105 60-150 100-170 109 110 120 65 63 60-63 210 60-66 165 120 63-70 150-180 180 150 90 65-75 148 270 280 150 60-65 150 300-330 64-68 110 275 90 240 360 90 124-140 150-180 150-180 154-161 330-360 0.403 0.386 0.468 0.468 0.558 0.943 0.976 1.012 1.04 1.083 1.144 1.103 1.204 1.356 1.723 1.554 1.554 1.64 1.597 1.43 1.64 1.731 2.403 1.804 2.188 2.188 2.26 2.26 2.675 2.318 2.332 2.472 19.86 19.44 21.38 21.38 23.31 30.2 30.73 31.38 31.7 32.17 33.21 32.63 34.06 36.12 40.63 38.61 38.61 39.65 39.04 37.07 39.65 40.73 47.87 41.57 45.71 45.71 46.45 46.45 50.47 47.03 47.17 48.54 H (m)* 0.06-0.09 0.11 0.13 0.11 0.28 0.13-0.24 0.27 0.18-0.25 0.24-0.32 0.28-0.30 0.19-0.29 0.43 0.20-0.30 0.25-0.30 0.23-0.33 0.4 0.4-0.53 0.5-0.7 0.5-0.7 0.44-0.74 0.7 0.75 0.5-0.75 0.57 0.5-0.8 0.6-0.8 0.3-0.4 0.8 0.6-0.9 BMI (kg/m2) 2.044 17.36 12.43 2.025 1.276 8.041 6.173 8.312 5.74 6.064 8.682 5.408 13.6 12.6 13.4 9.375 7.527 14.58 12.5 11.49 10.2 10.67 15.34 18.4 16.59 12.24 48.98 9.38 14.22 0.65-08 0.5-0.6 0.7-1 1 0.7-10 1.2 0.8 1.2 1.16 1.2 1.5 1.8 1.3 1.3 1.5 1.65 1.14 1-1.6 1.47 2.5 1 1.3 2-3 1.8 1.4 1.75 1.3 2 2 1.7 1.6 3 15.22 24.8 13.84 10 18 19.8 46.87 22.22 24.52 24.3 16.9 11.11 24.11 28.8 31.11 22 46.5 38.23 28.9 8.48 65 41.47 18.4 23.15 51 32.65 61.76 26.25 33.75 37.7 43 13.33 Trakia Journal of Sciences, Vol. 12, Suppl. 1, 2014 71 ATANASOV A., et al. 62.Ursus thibetanus 63.Capra sibirica 64.Phoca vitulina 65.Lama glama 66.Ovis ammon 67.Pagopoca groenlandica 68.Cervus nippon 69.Panthera leo 70.Gorilla gorilla 71.Tapirus terrestris 72.Panthera tigris 73.Ursus arctos 74.Pongo pigmaeus 75.Monachus monachus 76.Cervus elaphus 77.Ovibos moschatus 78.Equus burchelli 79.Cystophora cristata 80.Kogia breviceps 81.Camelus bactrianus 82.Ursus maritimus 83.Bison bonasus 84.Poephagus gruniens 85.Equus cabalus 86.Ursus horribilis 87.Bubalus caffer 88.Giraffa camelopardalis 89.Bison bison 90.Delphinapterus leucas 91.Bubalus aranee 92.Syncerus caffer 93.Tapirus indicus 94.Diceros bicornis 95.Rhinoceros unicornis 96.Hippopotamus amphibius 97.Ceratotherium simum 98.Elephas maximum 99.Loxodonta africana 100.Orcinus orca 101.Balaenoptera physalus 102.Balaena mysticetus 103.Balaenoptera musculus 140 100-130 150 up to 101 100-170 170 148 180-240 110-300 200 227-272 250 up to 250 300 300-340 up to 300 up to 350 400 400-500 450-490 700 600-800 up to 720 up to 700 up to 800 800-1000 1000 1000 1000 1000-1200 1000-1200 1500 up to 2000 up to 2000 3200 3000 5000 7500 12500 100000 100000 160000 210 170-180 270-300 330-397 150-180 330 240 105-112 270 390-400 95-154 180-240 270 315 165-224 270 361-390 330 270 365-440 230-250 270 255-304 350 250 270-280 420-446 265-270 330-360 300-328 330 390-395 450-548 484.5 210-240 540 607-641 660 480 360 360 420 The correlation coefficients R2 of relationships given on Table 2 vary between 0.612 and 0.941. This shows that the relationships are not random. The power and linear coefficients in the relationships for body surface and the square of body length differ negligible i.e. these relationships are nearly equivalently in relation to the length of pregnancy. 2.741 2.4 2.87 2.202 2.675 3.122 2.845 3.596 3.539 3.481 4.037 4.042 4.042 4.567 4.77 4.567 5.064 5.535 5.993 6.17 8.058 8.058 8.211 8.058 8.812 9.535 10.23 10.23 10.23 10.9 10.9 13.43 16.28 16.28 22.31 21.36 30.08 39.47 55.58 223.87 223.87 306.73 51.07 47.87 52.25 45.86 47 54.46 52.02 58.39 57.93 57.45 61.81 61.85 61.85 65.68 67.1 65.68 69.11 66.74 75.087 76.175 86.87 86.87 87.69 86.87 86.87 90.78 94.4 97.75 97.75 97.75 100.92 100.92 111.7 122.85 143.43 140.45 166.2 190 224.9 446.69 446.69 521.68 2 1.65 1.8 1.6 2 2 1.18 2.7 2 1 2.9 2 1.5 2.75 2.4 2.4 2.5 2.8 3 3 2.5 3.5 4 3 2.75 2.75 4 3 5 1.9 2.2 2.5 3.8 3.15 4.5 4.5 5 5 8 25 21 32 35 42.3 42.3 39 33.75 42.5 106 28.8 51.25 200 29.73 62.5 111.1 39.7 55.55 52.08 56 51 50 52 112 57.14 45 77.8 105.8 132.3 62.5 111.1 40 160.34 227 240 138.5 201.5 158 148.14 200 300 195.3 160 226 161.24 The Figure 1 shows that the scaling exponent of relationships: M/S = 0.3474 T 0.9768 and M/H2 = 0.2184 T 0.9968 differ negligible (0.9768 and 0.9968), as well as the linear coefficient (0.3474 and 02184), and corresponding coefficients (0.753 and 0.612) in two relationships. Thus, the BMI and M/S ratio are equivalently in relation to the length of pregnancy too. Table 2. Alometric relationships between the body parameters and the length of pregnancy n 1. 2. 3. 4. 5. 6. 7. 72 EQUATIONS M = 2.248×10-5 T 2 . 9744 H2 = 9.85×10-5 T 1. 9864 H = 9.81×10-3 T 0.9931 S = 8.093×10-5 T 1.9844 M/S = 0.3474 T 0.9768 M/H2 = 0.2184 T 0.9968 H2 = 1.123 S 0. 9906 Correlation coefficient R2 R2 = 0.7553 R2 = 0.7244 R2 = 0.7283 R2 = 0.7539 R2 = 0.7534 R2 . = 0.612 R2 = 0.941 Trakia Journal of Sciences, Vol. 12, Suppl. 1, 2014 ATANASOV A., et al. 3 BMI M/S BMI (M/S), kg/m2 2,5 y = 0.9968x - 0.6571 R2 = 0.612 2 1,5 1 0,5 y = 0.9768x - 0.5254 R2 = 0.7534 0 0 0,5 1 1,5 Tpr, days 2 2,5 3 Figure 1. Linear relationships between BMI, M/S ratio and length of pregnancy T in 103 Metatheria and Placentalia. The power coefficients 0.9968 and 0.9768 in two relationships are very near to 1.0. The found relationships can be used for prognostic purpose in the human and the veterinary medicine. REFERENCES 1. Arrowsmith, S., Wray, S. and Quenby, S., Maternal obesity and labour complications following induction of labour in prolonged pregnancy. BJOG 118, 578-588 , 2011. 2. Atanasov, A.T., Possible metabolism-body weight effect on prolongation and reduction of pregnancy duration. Medical Hypotheses 64, 1247-1248, 2005. 3. Atanasov, A.T., Allometric relationship between the length of pregnancy and body 4. 5. 6. 7. weight in mammals. Bulgarian Journal of Veterinary Medicine 8(1), 13-22, 2005b. Grant, V., Evolution of the organisms, Mir, Moscow, 1980, Russian. Markov, G., Animals, 2nd ed., Science, Sophia, Bulgaria, 1980. Rübner, M., Ueber den Einfluss der Körpergrösse auf Stoffund Kraftwechsell, Z. Biol. 19: 535-562, 1883. Atanasov, A. T., Prognosis of Prolongation and reduction of Human Pregnancy Duration, Using Alometric Relation Btetween length of Pregnancy, Body mass and Metabolism of Mammals. J. Med. Sci., 5: 204-207, 2005. Trakia Journal of Sciences, Vol. 12, Suppl. 1, 2014 73
© Copyright 2025 Paperzz