Fourier Series - (12.1)(12.2) 1. Periodic Functions: A function f is a periodic function with period 2p if fx 2p fx . Example Sketch the graph of function. a. fx b. gx -2 -1 x if 0 t x 1 2"x if 1 t x t 2 sinx if 0 t x t = 0 if = t x t 2= with a period of 2 with a period of 2=. 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 1 2 3 -6 4 -4 -2 0 y fx 2 4 6 8 10 12 y gx 2. Fourier Series of a periodic function with period 2p : Functions sinbx and cosbx are periodic functions with a period of 2= . The periods of b =x =x cos p , sin p are 2p, and periods of n=x cos n=x p , sin p 2p are n where n is a positive integer. A linear combination of =x =x =x 1, cos =x p , sin p , cos 2 p , sin 2 p , . . . , also has a periodic of 2p. Let fx be defined a function on the interval "p, p with period 2p. Then the Fourier series of fx is defined by . n=x fx a 0 ! a n cos n=x p b n sin p 2 where for n 1, . . . , n1 a 0 1p p ; "p fx dx, b n 1p a n 1p p ; "p fx cos n=x p dx p ; "p fx sin n=x p dx Note that: a. If fx is an even function, then fx sin n=x p is an odd function and b n 0 for all n u 1 and 1 a 0 2p p ; 0 fx dx, a n 2p p ; 0 fx cos n=x p dx, . fx a 0 ! a n cos n=x p " a cosine series 2 n1 b. If fx is an odd function, then fx cos n=x p is an odd function and a n 0 for all n u 0 and b n 2p p ; 0 fx sin n=x p dx, . fx ! b n sin n=x p " a sine series n1 c. The derivation is based on the following property: functions 2=x 2=x =x 1, cos =x p , sin p , cos p , sin p , . . . , are orthogonal on "p, p , i.e., p p p =nx p ; "p cos =nx p dx n= sin p | "p n= ¡2 sin=n ¢ 0 p ; "p sin =nx dx 0 p p =nx p =n sin =m 0 if n p m cos =mx dx 2p n sin =n cos =m2 " m cos 2 p =n " m p =nx p sin =mx dx 0 p p =nx p =n cos =m 0 if n p m sin =mx dx "2p n cos =n sin =m2 " m sin p =n " m 2 ; "p cos ; "p cos ; "p sin Convergence of a Fourier Series: U U Let f and f be piecewise continuous on the interval "p, p , that is, let f and f be continuous except at a finite number of points in the interval and have only finite discontinuities at these points. Then the Fourier series of f on the interval converges to fx at a point of continuity. At a point of discontinuity, the Fourier series converges to the average 1 lim fx lim fx . xva 2 xva " Example Find Fourier series of the periodic function fx "k if " = x 0 k if 0 x = with a period of 2=. 1 0.5 -6 -4 0 -2 2 x 4 6 -0.5 -1 fx "k if " = x 0 k if 0 x = 2 p =. Since fx is odd, a n 0, for n u 0. n 2 ; = fx sinnx dx 2 ; = k sinnx dx " 2k cos =n " 1 " 2k "1 " 1 bn = = 0 = = n n 0 4k . when n is even, cosn= 1, and then b n 0; and when n is odd, cosn= "1 and then b n n= 0 4k n= bn . fx ! m0 n 2m n 2m 1 1 1 4k sin2m 1 x 4k = sinx 3 sin3x 5 sin5x . . . . 2m 1 = Let k 1. 4 sinx F 1 x = 4 ¡sinx F 2 x = 4 ¡sinx F 3 x = 1 sin3x ¢ 3 1 sin3x 1 sin5x ¢ 5 3 1 0.5 -6 -4 -2 0 2 x 4 6 -0.5 -1 y fx , F 1 x , F 2 x , F 3 x , Example Find Fourier series of the periodic function fx x if 0 x 1 1 " x if 1 x 2 , with a period of 2. 3 1 0.5 -2 -1 0 1 2 -0.5 -1 p 1. Since fx 1 " x 2 "x " 1, for "1 x 0. the function fx can also be written as: fx a0 an bn 1 1 x if 0 x 1 "x 1 if " 1 x 0 1 0 ; "1 fx dx ; "1 "x 1 dx ; 0 xdx 0 1 0 ; "1 fx cosn=x dx ; "1 "x 1 cosn=x dx ; 0 x cosn=x dx 1 n 2m 0 "4 = 2 2m 1 2 2 "1 cos=n 2 "1 "1 n =2n2 =2n2 n 2m 1 , m 0, 1, . . . 1 0 ; "1 fx sinn=x dx ; "1 "x 1 sinn=x dx ; 0 x sinn=x dx 1 1 " cosn= 1 1 " "1 n =n =n 0 2 =2m 1 n 2m n 2m 1 , m 0, 1, . . . . fx a 0 !¡a n cosn=x b n sinn=x ¢ 2 n1 . ! m0 2 "4 cos2m 1 =x sin2m 1 =x =2m 1 = 2 2m 1 2 2 sin=x F 1 x " 42 cos=x = = F 2 x F 1 x " 4 2 cos3=x 2 sin3=x 3= 9= F 3 x F 2 " 4 2 cos5=x 2 sin5=x 5= 25= 4 1 0.8 0.6 0.4 0.2 -3 -2 -1 0 -0.2 1 2 x 3 -0.4 -0.6 -0.8 -1 y fx , F 1 x , F 2 x , F 3 x Example Find Fourier series of the periodic function fx 0 if " = x 0 2 , with a period of cosx if 0 t x = 2 =. 0.8 0.6 0.4 0.2 -1.5 -1 -0.5 0 0.5 x 1 1.5 y fx , " = t x t = 2 2 p = 2 =/2 2 = =/2 n=x 2 a0 = ; "=/2 fx dx 2 an = ; "=/2 fx cos = 2 =/2 ;0 2 cosx dx = 2 dx = =/2 ;0 2 cos =n cosx cos2nx dx " = "1 4n 2 n 2"1 n1 2 "1 "= "1 4n 2 ="1 4n 2 5 2 bn = =/2 ; "=/2 fx sin2nx dx 2 = =/2 ;0 2 " sin =n 2n cosx sin2nx dx = "1 4n 2 4n ="1 4n 2 . fx a 0 ! a n cos2nx b n sin2nx 2 n1 . 2"1 n1 4n cos2nx sin2nx ="1 4n 2 ="1 4n 2 1 ! = n1 1 2 = = 1 2 = = . ! n1 "1 n1 2n cos2nx sin2nx "1 4n 2 "1 4n 2 1 cos2x 2 sin2x " 1 cos4x 4 sin4x 1 cos6x 6 sin6x ". . . 3 3 15 15 35 35 1 0.8 0.6 0.4 0.2 -3 -2 -1 0 1 x 2 3 y fx , " = t x t = 2 2 6
© Copyright 2026 Paperzz