MATH 4C HW #4 Book Problems 2.4: 26, 28 3.2: 26, 28, 30 3.3: 16, 22 Other Problems 1) Classify the following as polynomials, rational functions, or neither. 1 x4 (d) f (x) = (a) f (x) = x4 −3x−10 (b) f (x) = x4 −3x 2 −10 (c) f (x) = 3x−10 (e) f (x) = 18 2x 3x +1 2) Give an example of polynomials p and q of degree 5 such that deg(p+q) does not equal 5. 3) Divide 3x4 + x2 + 2 by x2 + 1. 4) Let f (x) = x4 + 5x3 + 5x2 − 5x − 6 (a) Find f (1) and f (−1) (b) Solve f (x) = 0 (Hint: Use (a)) Graph the following, write any intercepts, and draw and label any asymptotes and holes. Show all steps 5) y = 2x2 + 5 x2 − 25 6) y = 1 − 23−x 7) y = x2 + 3x x3 + 3x2 − x − 3 8) y = − log2 (−4 − x) − 2 9) y = 5 + |3−x − 1| −3x2 + 3 10) y = 2 x + 2x + 1 Simplify 1 11) (a) log( 10 ) (b) log4 ( 18 ) 12) (a) log3 (−9) (b) log3 (0) √ √ 13) (a) log32 ( 2) (b) log 1 ( 5 27) 9 √ π 14) (a) log8 (( 2) ) (b) log 1 (4) log4 (81) 3 15) (a) 1 1 ln( 36 ) ln( 36 ) (b) √ ln(6) log e (6) 1 16) (a) ln(4e) + ln( 4e ) (b) log5 (25 − 5) − log5 (100) (c) ln Solve 17) 3x = 1 27 18) 34+x = 6 19) ln(x) = 1 8 20) log4 (x2 − x) = 2 21) 53+2x = 5x 2 +6 22) 52x − 5(5x ) = 36 23) 22x + 2x+1 − 24 = 0 24) (ln(x))4 > 2(ln(x4 )) 25) log3 (x − 1) + log3 (2x − 5) = 2. 2 26) log4 ( 4−7x )= x−5 3 2 27) log4 (4 − 7x2 ) − log4 (x − 5) = 3 2 28) log2 (x) + log4 (x) + log8 (x) = 11 29) log3 (x) − 8 logx (3) = −2 x 30) log2 (4x) log2 ( 32 )=8 31) e3x + 9e2x − 9ex − 1 ≤ 0 Find the domain 32) f (x) = log3 (4x − 20) 4 33) f (x) = log3 xx3 −1 +1 34) f (x) = log3 x4 −13x2 +36 x2 +x−6 35) f (x) = ln(ln(ln(x))) p √ e e
© Copyright 2026 Paperzz