Exam Name___________________________________ MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Simplify the expression. cos θ 1) + tan θ 1 + sin θ A) sec θ 1) C) cos θ + sin θ B) sin2 θ D) 1 Complete the identity. sin θ cos θ 2) + = ? cos θ sin θ A) -2 tan2 θ 3) tan4 θ - sec4 θ = ? A) sec 2 θ + tan 2 θ 2) B) sec θ csc θ C) sin θ tan θ D) 1 + cot θ 3) C) -2 tan2 θ - 1 B) sec 2 θ D) tan 2 θ - sec2 θ Find the exact value of the expression. 11π 4) sin 12 A) 2( 3 - 1) 4) 2( 3 - 1) 4 B) C) - 5) sin 20° cos 100° + cos 20° sin 100° 1 1 A) - B) 2 3 2( 3 - 1) 4 D) - 2( 3 - 1) 5) C) - Complete the identity. 6) sin (α + β) cos β - cos (α + β) sin β = ? A) sin α cos2 β - sin α sin2 β 3 2 D) 3 2 6) B) sin α D) sin α cos β - cos α sin β C) 2 sin β cos β (sin α - cos α ) Find the exact value of the expression. 2 1 7) sin sin-1 + cos-1 3 3 A) 2 6 5 B) 7) 2 3 5 C) 2 + 2 10 9 D) 2 3 + 2 10 9 Use the information given about the angle θ, 0 ≤ θ ≤ 2π, to find the exact value of the indicated trigonometric function. 3 8) csc θ = - , tan θ > 0 Find cos (2θ). 8) 2 A) - 1 9 B) -4 5 9 C) 1 1 9 D) 4 5 9 9) sin θ = A) 2 6 , tan θ < 0 5 -4 6 25 Find sin (2θ). B) - 9) 23 25 C) 4 6 25 D) 23 25 Complete the identity. 10) sin θ cos3 θ + sin3 θ cos θ = ? 10) A) 1 sin2 (2θ) 4 B) 1 sin (2θ) cos (2θ) 2 C) 1 sin (3θ) sin (2θ) 6 D) 1 sin (2θ) 2 Use the information given about the angle θ, 0 ≤ θ ≤ 2π, to find the exact value of the indicated trigonometric function. 3 3π θ 11) cos θ = - , π < θ < Find cos . 11) 5 2 2 A) 5 5 B) - 3 3π 12) sin θ = - , < θ < 2π 5 2 A) - 10 10 30 10 C) 30 10 D) - 5 5 θ Find sin . 2 B) - 12) 30 10 C) - 5 5 D) 5 5 Use the Half-angle Formulas to find the exact value of the trigonometric function. 5π 13) cos 12 A) - 1 2 2 - 3 B) - 1 2 2 + 3 C) 1 2 2 - 3 Express the product as a sum containing only sines or cosines. 14) sin (5θ) cos (2θ) 1 1 A) [sin (7θ) + sin (3θ)] B) [sin (7θ) + cos (3θ)] 2 2 C) sin cos (10θ2 ) D) D) 1 2 2 + 3 14) 1 [cos (7θ) - cos (3θ)] 2 Express the sum or difference as a product of sines and/or cosines. 15) cos (3θ) - cos (5θ) A) cos (-2θ) B) -2 sin (4θ) sin θ C) -2 cos (4θ) sin θ D) 2 sin (4θ) sin θ 2 13) 15) Solve the equation on the interval 0 ≤ θ < 2π. 3 16) sin (4θ) = 2 16) A) 0 C) B) π π 2π 7π 7π 13π 5π 19π , , , , , , , 12 6 3 12 6 12 3 12 17) 2 cos θ + 1 = 0 3π A) 2 π 5π , 4 4 D) 0, π , π 4 17) π 5π B) , 3 3 π 3π C) , 2 2 2π 4π D) , 3 3 Solve the equation. Give a general formula for all the solutions. 2 18) cos (2θ) = 2 π 7π A) θ = + kπ, θ = + kπ 8 8 C) θ = π 7π B) θ = + 2kπ, θ = + 2kπ 8 8 4π 2π + kπ, θ = + kπ 3 3 19) tan θ = -1 π A) θ = + 2kπ 4 18) π 3π D) θ = + kπ, θ = + kπ 4 4 19) 3π B) θ = + kπ 4 3π C) θ = + 2kπ 4 π D) θ = + kπ 4 π 5π C) , 6 6 π 5π D) 0, π, , 6 6 Solve the equation on the interval 0 ≤ θ < 2π. 20) 2 sin2 θ = sin θ π 2π A) , 3 3 20) π 3π π 2π B) , , , 2 2 3 3 21) sin2 θ - cos2 θ = 0 π π A) , 4 6 C) 21) π 3π 5π 7π B) , , , 4 4 4 4 π 4 D) 22) 22) sin (2θ) + sin θ = 0 π 9π A) , 8 8 C) π π , 4 3 2π 4π B) 0, , π, 3 3 π 3π 5π 7π , , , 4 4 4 4 D) No solution 3
© Copyright 2026 Paperzz