Ministry Of Higher Education Higher Institute of Engineering 6th of October City Department of Basic Science Prep. Year: Final Exam Mathematics: (Calculus I) Course Code, BAS 11 Date: January 2011 مدينة الثقبفة و العلوم ) أسئلة فى صفحة واحدة و المطلوة اإلجببة عه كل األسئلة5( االمتحبنMarks سبعبت3 :الزمه [1]Find y` from the following: (a) y 2x3 cos x (b) y 3x.tan x sin x (d) y sinh 1x tan 1x (e) y x sinh x 12 (c) y = ln x log( x 2 1) (f) x 2 y 2x 3y 0 [2](a)Write the membership table of the statement: S (A B`) (B C) (b)Evaluate the following limits: 3 x 1 x sin x tan 2x x 1 (i) Lim (ii) Lim (iii) Lim (iv) Lim x x 3 4 x 0 e e x 0 x 4x x 1 ln x x 1 x 1 [3](a) Sketch the curve of the function f(x) = x3 3x (b) Find the area of the region between the curve y = sin x , x- axis, x[0, 2π] 4 8 4 4 2 log x (c) Using trapezoidal rule, compute the integral 4 4 x x 4 dx , n = 5 x 2 1 [4](a) Sketch the curve of the function f(x) = (b) Find the following integrals: (i) (3 x 2 2x) dx 1 1 (ii) (x )dx x x2 (iii) x.3x dx x (iv) dx x 2 2x 1 2 [5](a)Compute the length of the curve given by y = 4 x 3 / 2 , x[1, 2] 3 (b)If the region between the curve y cos2x , x-axis, x[0, π 2] is rotated about x-axis. Find the volume of the generated solid. (c) Find the following integrals: 1 π/2 1 x 3 dx dx (i) (ii) 2 4 5sin x 2 1 0 x Good Luck Dr. Mohamed Eid 8 3 3 6
© Copyright 2026 Paperzz