Carbene-Mediated C-H Activation and Insertion Presentation outline ! Introduction " Classification of carbene precursors: diazocarbonyls " Synthesis of diazocarbonyls " Decomposition of diazocarbonyl to metal-carbenoids ! Intermolecular C-H activation " Acceptor-Substituted Carbenoids " Acceptor/Acceptor-Substituted Carbenoids " Donor/Acceptor-Substitued Carbenoids ! Catalysts and models for asymmetric induction ! Conclusions Interesting Reviews: " Davies, H. M. L.; Øystein, L. Synthesis 2004, 16, 2595. " Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861. " Bourissou, D.; Guerret, O.; Gabbai, F. P.; Bertrand, G. Chem. Rev. 2000, 100, 39. Introduction to Carbene-Mediated C-H Activation ! Activation through insertion of highly reactive metal complex H C MLn X C MLn H C XH Regeneration of the metal complex can be difficult ! Activation using a metal-carbenoid complex X MLn N2 C H Y X MLn N2 Y H C X Y No direct interaction between the metal and alkane C-H bond Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861. Classification of the Carbene Precursor Most commonly used diazo compounds ! The carbenes used for C-H activation can be divided into three groups N2 Acceptor-Substututed X H X= EWG: COR, CO2R, NO2, PO(OR)2, SO2R N2 Acceptor/Acceptor-Substituted X X X= EWG: COR, CO2R, SO2R, CN N2 Donor/Acceptor-Substituted X Y X= EWG: COR, CO2R Y= EDG: aryl, vinyl, alkynyl, heteroaryl Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861. Synthesis of Diazocarbonyls A Brief Look Curtius 1883 EtO2C KNO2 NH2•HCl EtO2C 2 H2O KCl N2 Acyl transfer O R O OH O Cl Cl or Cl 1. OEt N2 R CH2N2 2. O O Et3N Diazo transfer O O O O TsN3, Et3N R R R' R' R,R' = alkyl, alkoxy N2 Deformylating diazo transfer O O O R R' H OEt Base OH R H R' O TsN3 N2 R R' TsNHCHO R = alkyl, alkoxy R'= alkyl, aryl Ye, T.; McKervey, M. A. Chem. Rev. 1994, 94, 1091. Decomposition of Diazocarbonyls to Metal-Carbenoids RO O Rh Rh RO RO N2 R N Rh N O N2 CH2 N Rh N O –N2 O Rh2 R CH2 RO Rh2 R N N CH2 R N N CH2 Acceptor-Substituted Carbenoids Intermolecular C-H activation ! C-H Activation of Alkanes CO2Et H CO2Et N2 EtO2C CO2Et CO2Et Rh(II) catalyst A catalyst Rh2(OAc)4 Rh2(9-trp)4a Rh2(TFA)4 aDirhodium(II) B C D ratio A:B:C:D 1:8:90:1 18:18:27:37 5:25:66:4 tetrakis(9-triptycenecarboxylate). Carbene dimerization is also a major side reaction. Other Rh(II) catalysts did not improve selectivity. Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861. Acceptor-Substituted Carbenoids Intermolecular C-H activation ! C-H Activation of Functionalized Organic Substrates H H CO2Et N2 EtO2C CO2Et Rh2(OAc)4 CH2Cl2, 25˚C H 16% yield 64% yield Cyclopropanation out competes C-H insertion. H N2 OEt EtO2C Rh(II) catalyst CH2Cl2 OEt EtO2C OEt CO2Et Only products obtained are from cyclopropanation and ylide rearrangement. Doyle, M. P.; Hu, W. J. Org. Chem. 2000, 65, 8839. Muller, P.; Tohill, S. Tetrahedron 2000, 56, 1725. Davies, H. M. L.; Hansen, T. J. Am. Chem. Soc. 1997, 119, 9075. Acceptor-Substituted Carbenoids Intermolecular C-H activation ! C-H Activation of Functionalized Organic Substrates OTIPS H N2 CO2Et TIPSO OTIPS EtO2C Rh2(II) catalyst catalyst Rh2(OOct)4 Rh2(S-DOSP)4 CO2Et yield, A+B ratio, A:B 66 54 96:4 76:24 R H N2 R EtO2C O Cu(I) catalyst O 98% yield N R N B N CO2Et R N R H Cu R N R N R R R= 2,4,6-Me3C6H2 Diaz-Requejo, M. M.; Belderrain, T. R.; Nicasio, M. C.; Trofimenko, S.; Perez, P. J. J. Am. Chem. Soc. 2002, 124, 896. Davies, H. M. L.; Ren, P. J. Am. Chem. Soc. 2001, 123, 2070. Acceptor/Acceptor-Substituted Carbenoids Intermolecular C-H activation ! C-H Activation of Functionalized Organic Substrates MeO2C MeO2C CO2Me N2 MeO2C CO2Me Rh(II) catalyst CH2Cl2, 25˚C CO2Me catalyst A B yield, A+B ratio, A:B ee B, % 96 86 30 38:62 24:76 49:51 24 7 Rh2(OAc)4 Rh2(S-PTPA)4 Rh2(R-BPN)4 MeO2C MeO2C CO2Me N2 MeO2C CO2Me Rh(OAc)4 CH2Cl2, 25˚C CO2Me 42% 21% Müller, P.; Tohill, S. Tetrahedron 2000, 56, 1725. Donor/Acceptor-Substituted Carbenoids Intermolecular C-H activation ! C-H Activation of cycloalkanes Ar CO2Me N2 MeO2C n n 1 1 2 2 2 2 2 2 Ar Rh(S-DOSP)4 10˚C Ar yeild, % C6H5 p-ClC6H4 C6H5 p-BrC6H4 p-ClC6H4 p-MeOC6H4 p-C3C6H4 o-ClC6H4 aConfigurational n 72 70 80 64 76 23 78 81 ee, %a 96(R) 95(R) 95(R) 95(R) 94(R) 88(R) 94(R) 90(R) assignment in parentheses. Davies, H. M. L.; Hansen, T. J. Am. Chem. Soc. 1997, 119, 9075. Donor/Acceptor-Substituted Carbenoids Intermolecular C-H activation ! C-H Activation of cycloalkanes Ar CO2R N2 MeO2C Ph Rh(S-DOSP)4 10˚C R CH3 CH(CH3)2 C(CH3)3 yeild, % 80 39 45 ee, % 92 86 20 We can see the delicate balance between steric and electronic effects in these systems Davies, H. M. L.; Hansen, T.; Churchill, M. R. J. Am. Chem. Soc. 2000, 122, 3063. Donor/Acceptor-Substituted Carbenoids Intermolecular C-H activation ! C-H Activation of alkanes Relative reactivity of alkyl C-H bonds 3˚ ! 2˚ >> 1˚ Ph N2 Ph Ph MeO2C Rh(II) catalyst MeO2C MeO2C 31% yield 86% ee 44% yield 26% ee Ph Ph Ph MeO2C MeO2C CO2Me 27% yield 66% ee 67% yield 90% ee 60% yield 68% ee Davies, H. M. L.; Hansen, T.; Churchill, M. R. J. Am. Chem. Soc. 2000, 122, 3063. Donor/Acceptor-Substituted Carbenoids Intermolecular C-H activation ! Allylic C-H Activation N2 R2 p-BrPh Rh2(S-DOSP)4 2,2-DMB, 23˚C R1 R1 C2H5 CH3 C6H5 R2 H CH3 C6H5 R2 CO2Me yeild, % 56 67 33 R2 CO2Me R1 CO2Me R1 Php-Br de, % ee A, % ee B, % 92 86 96 12 50 70 Php-Br 80 66 30 No cyclopropanation products were observed !,"-Unsaturated esters with two stereocenters are analagous to typical products from Claisen rearrangements OMe Johnson-Claisen O OMe R1 O R2 R1 R2 O OMe R2 R1 Davies, H. M. L.; Ren, P.; Jin, Q. Org.Lett. 2001, 3, 3587 Donor/Acceptor-Substituted Carbenoids Intermolecular C-H activation ! Allylic C-H Activation N2 R p-BrPh R R CO2Me H Rh2(S-DOSP)4 2,2-DMB, 23˚C H CO2Me A CO2Me Php-Br B Php-Br Reactions are highly regioselective. R1 CH3 C2H5a CH(CH3)2 C(CH3)3 C6H5 Cl TMS TBDPS a yeild, % 53 46 65 46 65 58 48 64 ratio, A:B 17:83 25:75 36:64 62:38 23:77 65:35 70:30 94:6 ee A, % ee B, % 94 90 90 91 90 96 88 95 98 94 93 81 95 91 – – Also isolated 2% yield from insertion into pendant ethyl group. Davies, H. M. L.; Ren, P.; Jin, Q. Org.Lett. 2001, 3, 3587 Donor/Acceptor-Substituted Carbenoids Intermolecular C-H activation ! Allylic C-H Activation of Cyclic and Acyclic Silyl Enol Ethers N2 OTIPS R2 p-R1Ph OTIPS R2 CO2Me Rh2(S-DOSP)4 0 to -30˚C R1 = H, Br R2 = H, CH3 OTIPS R2 CO2Me H CO2Me H Php-R1 Php-R1 Yields from86–90% and up to 96%ee N2 OSiR3 Ph p-BrPh OSiR3 Me CO2Me Rh2(S-DOSP)4 2,2-DMB, -30˚C CO2Me Ph Ph SiR3=TIPS, TBDPS 65% yield >90% de up to 84%ee Products are comparable to those obtained from asymmetric Michael additions But can these reactions be applied to the synthesis of useful targets? Davies, H. M. L.; Ren, P. J. Am. Chem. Soc. 2001, 123, 2070. Donor/Acceptor-Substituted Carbenoids Intermolecular C-H activation ! Application Toward Pharmaceutically Relevant Targets N2 Cl CO2Me Cl Cl Rh2(S-DOSP)4 -20˚C CO2Me Cl NHCH3•HCl Cl Cl (+)-indatraline 83% yield, 93% ee N2 O S Cl O Rh2(R-DOSP)4 hexane, 23˚C O S O 55% yield, 88% ee O Cl S N O (+)-cetiedil Davies, H. M. L.; Gregg, T. M. Tetrahedron Lett. 2002, 43, 4951. Davies, H. M. L.; Walji, A. M. Townsend, R. J. Tetrahedron Lett. 2002, 43, 4981. Donor/Acceptor-Substituted Carbenoids Intermolecular C-H activation ! Benzylic C-H Activation N2 p-BrPh Me CO2Me CO2Me Rh2(S-DOSP)4 2,2-DMB, 50˚C CO2Me Php-Br Me MeO2C H H p-BrPh Php-Br H A H CO2Me Php-Br H B CO2Me Php-Br C 50% combined yield A:(B+C) = 28:72 Complex mixtures of products can be avoid using substituted rings or by C-H activation of secondary benzylic sites. N2 p-BrPh R CO2Me Rh2(S-DOSP)4 2,2-DMB, 50˚C R=H, alkyl, alkoxy, halogen, Acetoxy, Acetate Me Me CO2Me CO2Me R Php-Br 50-86% yield up to 5.25:1 d.r. up to 89% ee R Php-Br No cyclopropanation products Davies, H. M. L.; Jin, Q.; Ren, P.; Kovalevsky, A. Y. J. Org. Chem. 2002, 67, 4165. Donor/Acceptor-Substituted Carbenoids Intermolecular C-H activation ! Benzylic C-H Activation N2 Ph MeO CO2Me Rh2(S-DOSP)4 50˚C CO2Me Ph MeO 74% ee CO2Me CO2Me Ph MeO 94% ee Ph OMe 78% combined yield 19:79:2 An electron donating group helps stabilize the positive charge that builds-up in the transition state at the site of carbene insertion Davies, H. M. L.; Jin, Q.; Ren, P.; Kovalevsky, A. Y. J. Org. Chem. 2002, 67, 4165. Donor/Acceptor-Substituted Carbenoids Intermolecular C-H activation ! C-H Activation ! to Nitrogen N2 1) Ar N Boc H CO2Me Rh2(S-DOSP)4 -50˚C N H Route to "-amino acids. Products comparable to Mannich reaction products. Ar CO2Me 2) TFA yeild, % Ar C6H5 p-ClC6H4 p-MeC6H4 2-naphthyl 3-thiophenyla a 1) Ph Boc ee, % 92 94 93 93 91 94 94 93 93 67 Reaction conducted at 23˚C N2 N 72 70 67 49 64 de, % (6 equiv.) CO2Me Rh2(S-DOSP)4 -50˚C to 58˚C Ph MeO2C H H N H Ph CO2Me 2) TFA Davies, H. M. L.; Walji, A. M. Townsend, R. J. Tetrahedron Lett. 2002, 43, 4981. Davies, H. M. L.; Hansen, T.; Hopper, D. W.; Panaro, S. A. J. Am. Chem. Soc. 1999, 121, 6509. Donor/Acceptor-Substituted Carbenoids Intermolecular C-H activation ! C-H Activation ! to Oxygen N2 Ar CO2Me H Ar Rh2(S-DOSP)4 hexane, -50˚C O yeild, % Ar p-ClC6H4 p-MeC6H4 p-MeOC6H4 74 60 56 O CO2Me de, % 41 60 55 ee, % 98 97 96 ! C-H Activation ! to Oxygen N2 Php-Cl TBSO R p-ClPh CO2Me Rh2(R-DOSP)4 hexane, 23˚C R= H, alkyl, vinyl, aryl R MeO2C Aldol-like syn-"-hydroxy esters OTBS 35–70% yield up to 98% de, 90%ee Davies, H. M. L.; Hansen, T.; Churchill, M. R. J. Am. Chem. Soc. 2000, 122, 3063. Davies, H. M. L.; Hansen, T. J. Am. Chem. Soc. 1997, 119, 9075. Donor/Acceptor-Substituted Carbenoids Intermolecular C-H activation ! Carbenoids Derived from Vinyldiazoacetates Ph N2 Ph CO2Me CO2Me CO2Me Rh2(S-DOSP)4 hexane, 23˚C H Ph 63% yield, 98% ee 12% yield This reaction gave an unexpected major product in addition to a product arising from a well known cyclopropanation/Cope pathway. Athough it appears to come from C-H insertion followed by a Cope rearrangement, this is not the case. Ph Ph CO2Me Rh(II) catalyst hexane, reflux CO2Me The 1,3 diene undergoes a retro-Cope to the thermodynamic product. Proposed mechanisms include a one-step C-H activation/Cope or the vinylcarbenoid may react as a 2!-system analgous to an ene reaction. Davies, H. M. L.; Stafford, D. G.; Hansen, T. Org. Lett. 1999, 1, 233. Donor/Acceptor-Substituted Carbenoids Intermolecular C-H activation ! The C-H Insertion/Cope Tolerates Various Substituents on the Vinyldiazoacetate R1 N2 R1 CO2Me CO2Me Rh2(S-DOSP)4 hexane, 23˚C R yeild, % C6H5 p -MeOC6H4 3,4-Cl2C6H3 2-naphthyl o -MeOC6H4 1-naphthyl (E)-CH=CHC6H5 –(CH2)4– 63 58 59 50 17 22 60 73 ee, % 96 99 99 99 86 84 99 97 Davies, H. M. L.; Stafford, D. G.; Hansen, T. Org. Lett. 1999, 1, 233. Donor/Acceptor-Substituted Carbenoids Intermolecular C-H activation ! C-H Insertion/Cope Utilized in the Synthesis of (+)-Imperaene and (–)-Conidendrin OH N2 CO2Me CO2Me MeO MeO TBSO 1) LAH TBSO OMe MeO Me HO 2) TBAF Rh2(R-DOSP)4 2,2DMB, 23˚C OMe OTBS OMe OTBS OH 43% yield, 91% ee (+)-imperanene O N2 CO2Me MeO MeO CO2Me MeO Me O HO TBSO TBSO OMe OTBS Rh2(S-DOSP)4 2,2DMB, 23˚C OMe OMe OTBS 44% yield, 92% ee OH (–)-conidendrin Davies, H. M. L.; Jin, Q. Tetrahedron: Asymmetry 2003, 14, 941. Donor/Acceptor-Substituted Carbenoids Intermolecular C-H activation ! Synthons Accesible Through Asymmetric C-H Activation R2 O– O O R1 R2 X Claisen rearrangement R X R1 R Michael R2 R1 O O O OTBS R2 R1 R1 R2 X R1 X R2 R R N2 X R O NHR O R1 OH NR2 X R1 OTBS R1 R1 X R R Aldol Mannich NR R1 O O O– H X R R1 O– H Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861. X R Donor/Acceptor-Substituted Carbenoids Intermolecular C-H activation ! Relative Reactivity BOC N 0.66 1 0.078 0.011 1700 O Ph2tBuSi Ph 2700 24,000 H 24,000 28,000 O Reactions with Ph MeO and Rh2(S-DOSP)4. N2 Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861. Catalytic Asymmetric C-H Activation Mechanistic Considerations ! The Mechanism is not Well Understood and a Source of Dispute Taber: four-centered H E H E Rh Me H E Rh H Me H E Rh H H Me E Rh Me H Me Doyle: three-centered concerted BA B A H H D H E A Rh2L4 D H E B H D Rh2L4 H E Taber, D. F.; You, K. K.; Rheingold, A. L. J. Am. Chem. Soc. 1996, 118, 547. Doyle, M.P.; Westrum, L.J.; Wolthuis, W.N.E.; See, M.M.; Boone, W.P.; Bagheri, V.; Pearson, M.M. J. Am. Chem. Soc. 1993, 115, 958. Catalytic Asymmetric C-H Activation Mechanistic Considerations ! The Mechanism is not Well Understood and a Source of Dispute Davies: three-centered concerted yet nonsynchronous process B A B D MeO2C H Ar A D MeO2C Rh2L4 B D H Ar MeO2C A Ar H Rh2L4 Pirrung: stepwise approach O O O R R Rh Rh Rh H Rh H C Rh Rh H R C C ! complex Davies, H.M.L.; Hansen, T.; Churchill, M.R. J. Am. Chem. Soc. 2000, 122, 3063. Pirrung, M.C.; Morehead Jr, A.T.; J. Am. Chem. Soc. 1994, 116, 8991. Catalytic Asymmetric C-H Activation Mechanistic Considerations ! Stereochemical Rationale for the Catalysts that Give the Highest ee's. These simplified models of the catalyst systems help rationalize stereoselectivity. H CO2Me CO2Me H ester groups N N O O O Rh O Rh N N Rh2(5R-MEPY)4 phthalimide groups Rh Hashimoto's catalysts Rh Doyle's catalysts arylsulfonyl groups Rh Davies/McKervey's prolinate catalysts Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861. Catalytic Asymmetric C-H Activation Mechanistic Considerations ! Stereochemical Rationale !-Lactam formation with Hashimoto's catalyst. O O O N MeO2C Rh tBu H O MeO2C tBu N R R approach from front Rh Rh2(S-PTPA)4 O Me O Hb Rh O O N R Ha Me O Hb Rh O N R Ha O MeO2C N Ha Hb R Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861. Catalytic Asymmetric C-H Activation Mechanistic Considerations ! Stereochemical Rationale Cyclopentanone formation with Hashimoto's catalyst. O O O O OCHiPr2 OCHiPr2 Rh R R R approach from front H O Rh2(S-PTPA)4 H O O H OCHiPr2 O Rh R H Rh CO2CHiPr2 OCHiPr2 O Rh R (3R) Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861. Catalytic Asymmetric C-H Activation Mechanistic Considerations ! Stereochemical Rationale Asymmetric induction with Doyle's catalyst. O H O O O N2 R R approach from front Rh Rh2(5R-MEPY)4 R H H R H O H O Rh O O HH O Rh O R (4R) Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861. Catalytic Asymmetric C-H Activation Mechanistic Considerations ! Stereochemical Rationale Asymmetric induction with dirhodium tetraprolinates. MeO2C Ar N2 S M S L M H approach from front MeO2C Rh Ar Rh H Ar L L CO2Me H SM L S !+ H M MeO2C Ar !" Rh S M MeO2C L Ar H Rh2(S-DOSP)4 Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861.
© Copyright 2026 Paperzz