9.2 Spherical Bessel functions of the first kind 363 sin x/x and j1 (x) = sin x/x2 cos x/x. Rayleigh’s formula leads to the recursion relation (exercise 9.22) ` j` (x) j`0 (x) (9.69) x with which one can show (exercise 9.23) that the spherical Bessel functions as defined by Rayleigh’s formula do satisfy their di↵erential equation (9.66) with x = kr. The spherical Bessel functions j` (kr) satisfy the self-adjoint Sturm-Liouville (6.333) equation (9.66) j`+1 (x) = r2 j`00 2rj`0 + `(` + 1)j` = k 2 r2 j` (9.70) with eigenvalue k 2 and weight function ⇢ = r2 . If j` (z`,n ) = 0, then the functions j` (kr) = j` (z`,n r/a) vanish at r = a and form an orthogonal basis Z a 0 j` (z`,n r/a) j` (z`,m r/a) r2 dr = a3 2 j (z`,n ) 2 `+1 n,m (9.71) for a self-adjoint system on the interval [0, a]. Moreover, since as n ! 1 2 = z 2 /a2 ⇡ [(n + `/2)⇡]2 /a2 ! 1, the eigenfunctions the eigenvalues k`,n `,n j` (z`,n r/a) also are complete in the mean (section 6.35). On an infinite interval, the analogous relation is Z 1 ⇡ j` (kr) j` (k 0 r) r2 dr = 2 (k k 0 ). (9.72) 2k 0 If we write the spherical Bessel function j0 (x) as the integral Z sin z 1 1 izx j0 (z) = = e dx z 2 1 (9.73) and use Rayleigh’s formula (9.68), we may find an integral for j` (z) ✓ ◆ ✓ ◆ ✓ ◆ Z 1 d ` sin z 1 d ` 1 1 izx ` ` ` ` j` (z) = ( 1) z = ( 1) z e dx z dz z z dz 2 1 Z Z z ` 1 (1 x2 )` izx ( i)` 1 (1 x2 )` d` izx = e dx = e dx 2 2 2` `! 2` `! dx` 1 1 Z Z ( i)` 1 izx d` (x2 1)` ( i)` 1 = e dx = P` (x) eizx dx (9.74) 2 2 dx` 2` `! 1 1 (exercise 9.24) that contains Rodrigues’s formula (8.8) for the Legendre polynomial P` (x). With z = kr and x = cos ✓, this formula Z 1 1 ` i j` (kr) = P` (cos ✓)eikr cos ✓ d cos ✓ (9.75) 2 1
© Copyright 2026 Paperzz