3 The Exponential and Logarithmic Function Contents Section ..................................................................................................................................... Page 3 The Exponential and Logarithmic Function ............................................................................. 1 3.1 Growth and Decay .................................................................................................................. 1 Note 1 – Growth and Decay...................................................................................................... 1 Example 2 – Growth ................................................................................................................. 2 Example 3 – Decay ................................................................................................................... 2 Further Examples ..................................................................................................................... 2 3.2 A Special Exponential Function exp(x) ................................................................................... 3 Note 1 – The Exponential Function ex ...................................................................................... 3 Example 2 – Calculating Continuous Growth............................................................................ 4 Further Examples ..................................................................................................................... 4 3.3 Exponential Functions and Related Logarithmic Functions .................................................... 5 Definition 1 – The Relationship between Exponential Functions and Logarithmic Functions .... 5 Note 2 – Some Important Results ............................................................................................. 5 Example 3 – Converting between exponential form and logarithmic form ................................ 5 Further Examples ..................................................................................................................... 6 3.4 Rules of Logarithms................................................................................................................ 8 Definition 1 – Rules of Logarithms ............................................................................................ 8 Example 2 – Using the Rules of Logarithms ............................................................................. 8 Example 2 – Solving Simple of Logarithmic Equations ............................................................. 9 Further Examples ..................................................................................................................... 9 3.5 Solving Exponential Equations ............................................................................................. 10 Example 1 – Solving Exponential Equations........................................................................... 10 Further Examples ................................................................................................................... 10 Page i 3 The Exponential and Logarithmic Function 3.1 Growth and Decay 3.1 Growth and Decay Note 1 – Growth and Decay The growth of money left in a bank account, the population of a country and the reproduction of cells are example of exponential growth and can all be modelled by an exponential function. y Exponential Growth Function x The decay of radioactive elements and the decrease in atmospheric pressure with height above sea level are examples of exponential decay and can be modelled by an exponential function. y Exponential Decay Function x Page 1 3 The Exponential and Logarithmic Function 3.1 Growth and Decay Example 2 – Growth Scotland’s population is currently 5.2 million and is growing at a rate of 0.54% per year. (a) Construct a growth function for the population in millions n years later. (b) Estimate the population of Scotland in 30 years time? Example 3 – Decay The half-life of strontium 90 is 29 years. (a) Write down the decay function for 5kg of strontium 90 after t years. (b) Calculate the mass of strontium 90 after 45 years to 2 decimal places. Further Examples Maths In Action Page 236 Exercise 1/2 Page 2 3 The Exponential and Logarithmic Function 3.2 A Special Exponential Function exp(x) 3.2 A Special Exponential Function exp(x) Note 1 – The Exponential Function ex The exponential function is defined as e x , sometimes written as exp( x ) , where e is an irrational number like π . The number e 2.71828182845905 to 14 decimal places. This number arises naturally in many areas of mathematics and science. Consider compounding interest (interest = 100%): 1 Yearly 1 1 1 2 Semi-annually 1 1 2 2.25 Quarterly 1 1 4 2.44140625 Monthly 1 1 12 2.61303529022... Weekly 1 1 52 Daily 1 1 365 Hourly 1 1 8760 Every Minute 1 1 525600 Every Second 1 1 31536000 2 4 12 52 2.69259695444... 365 2.71456748202... 8760 2.71812669063... 525600 2.7182792154... 31536000 2.71828247254... Notice that the more the interest in compounded, the closer to e the number becomes. If interest is calculated continuously then the formula for calculating the amount of money A, after time t is A A0ert where r is the interest rate and A0 is the initial amount of money. Page 3 3 The Exponential and Logarithmic Function 3.3 Exponential Functions and Related Logarithmic Functions Example 2 – Calculating Continuous Growth Due to inflation, prices increase annually. The price, P, of items after t years is given by P(t ) P0e0.045t , where P0 is the original price (the inflation rate is 4.5%). If a bottle of irn bru cost 84p then how much will it cost in: (a) 2 years (b) 10 years? Further Examples Maths In Action Page 239 Exercise 3 Q6-9 Page 4 3 The Exponential and Logarithmic Function 3.3 Exponential Functions and Related Logarithmic Functions 3.3 Exponential Functions and Related Logarithmic Functions Definition 1 – The Relationship between Exponential Functions and Logarithmic Functions An exponential function is related to a logarithmic function by y a x loga y x . Note the base of the logarithm function a is the same as the number raised to the power of x for the exponential function. Note 2 – Some Important Results Since a0 1 then loga 1 0 . Similarly, a1 a then loga a 1. a0 1 a1 a loga 1 0 a number raised to the power of 0 equals 1 a number raised to the power of 1 is that number log 1 to any base is 0 loga a 1 the log of a number to that base is 1 Example 3 – Converting between exponential form and logarithmic form 1. Write in logarithmic form: (a) 2. 24 (b) 1 16 (b) log27 9 Write in exponential form: (a) 3. 8 23 log3 81 4 Solve logx 9 2 . Page 5 2 3 3 The Exponential and Logarithmic Function 3.3 Exponential Functions and Related Logarithmic Functions 4. Find the value of log4 16 . Further Examples Maths In Action Page 240 Exercise 4 Page 6 3 The Exponential and Logarithmic Function 3.3 Exponential Functions and Related Logarithmic Functions Page 7 3 The Exponential and Logarithmic Function 3.4 Rules of Logarithms 3.4 Rules of Logarithms Definition 1 – Rules of Logarithms 1. loga xy loga x loga y 2. x loga loga x loga y y 3. loga x p p loga x Example 2 – Using the Rules of Logarithms Simplify the following expressions: (a) log3 log7 (b) log8 log4 (c) log8 log3 log6 (d) log27 3 log3 (e) log2 4 log2 4 (f) 3 log3 2 21 log3 4 (g) log5 25 (h) log2 32 Page 8 3 The Exponential and Logarithmic Function 3.4 Rules of Logarithms Example 3 – Solving Simple of Logarithmic Equations Solve (a) loga x loga 3 loga 15 (b) Further Examples Maths In Action Page 242 Exercise 5 Page 9 loga x 2 loga 4 loga 2 3 The Exponential and Logarithmic Function 3.5 Solving Exponential Equations 3.5 Solving Exponential Equations Example 1 – Solving Exponential Equations (a) Solve 4x 100 to 2 decimal places. (b) The value of a house V (t ) after t years is given by V (t ) 120000(1.04)t . After how many years will the value exceed £150,000? Further Examples Maths In Action Page 244 Exercise 6 Page 10
© Copyright 2026 Paperzz