Math1024 Answer to Homework 4 Exercise 3.5.10 (3) When p 6= −2, −1, then Z Z p (x − 1)(x + 1) dx = [(x + 1)p+1 − 2(x + 1)p ]dx = 1 2 (x + 1)p+2 − (x + 1)p+1 + C. p+2 p+1 When p = −2, −1, we have Z 2 + C, (x − 1)(x + 1)−2 dx = log |x + 1| + x+1 Z (x − 1)(x + 1)−1 dx = x − 2 log |x + 1| + C. Exercise 3.5.11 (2) Z Z x 2 (x + a ) dx = = = = = (x2 + 2xax + a2x )dx Z 1 3 a2x x + + 2 xax dx 3 2 log a Z 1 3 a2x 2 x + + xdax 3 2 log a log a Z 1 3 a2x 2 2 x x + + xa − ax dx 3 2 log a log a log a 1 3 a2x 2 2 x + + xax − ax + C. 3 2 log a log a (log a)2 Exercise 3.5.11 (3) Z xex dx =− (x + 1)2 Z Z 1 1 1 x xe d =− xe + d(xex ) x+1 x+1 x+1 Z 1 1 1 ex x xe + (x + 1)ex dx = − xex + ex + C = + C. =− x+1 x+1 x+1 x+1 x Exercise 3.5.14 Using integration by parts, we know Z 1 Z 1 Z 1 Z 1 1 1 a n n x n x x n−1 x a dx = x da = (a − a nx dx) = − xn−1 ax dx log a log a log a log a 0 0 0 0 1 Denote bn = R1 0 xn ax dx, Then bn = a n − bn−1 log a log a Thus we have, n−1 X n · · · (n − k + 1) n! a + bn = (−1)k a + (−1)n b0 , k+1 log a k=1 (log a) (log a)n n≥1 where b0 = a/ log a − 1/ log a. Exercise 3.5.16 (3) Z Z Z log(x + b) log(x + a) log(x + b) + dx = log(x + a)d(log |x + b|) + dx x+b x+a x+a Z Z log(x + b) log(x + b) = log(x + a) log(x + b) − dx + dx x+a x+a = log(x + a) log(x + b) + C. Exercise 3.5.16 (6) Z log(x + √ 1 + x2 ) 2 x 1+ √ 2 Z √ √ 2 √1 + x dx dx = x log(x + 1 + x2 ) − 2x[log(x + 1 + x2 )] x + 1 + x2 √ Z 2 √ x log(x + 1 + x2 ) √ = x log(x + 1 + x2 ) − 2 dx 2 1 + x Z 2 √ √ √ 2 = x log(x + 1 + x ) − 2 log(x + 1 + x2 )d 1 + x2 2 √ √ √ = x log(x + 1 + x2 ) − 2 1 + x2 log(x + 1 + x2 ) + 2x + C. Exercise 3.5.17 (1) From integration by parts, Z b b Z b 2 0 0 2 ((x + A) + B)df (x) = f (x)((x + A) + B) − 2(x + A)f 0 (x)dx a a a Z b b 0 2 = f (x)((x + A) + B) − 2(x + A)f (x) + 2 f (x)dx a Then by removing terms, we have the stated result. (2)First, we find A such that (b + A)f (b) − (a + A)f (a) = f (a) 2 b−a b−a + f (b) , 2 2 a we deduce A = −(a + b)/2. Then we take B = −(b − a)2 /4 to make f 0 (x)((x + A)2 + B)|ba = 0. With these values, we get Z b Z f (a) + f (b) 1 b f (x)dx = (b − a) + ((x + A)2 + B)f 00 (x)dx. 2 2 a a Direct computation shows that Z b Z b (b − a)3 2 |(x + A) + B|dx = − [(x + A)2 + B]dx = 6 a a (3) From the result of (2), Z b Z f (a) + f (b) 1 b f (x)dx − ((x + A)2 + B)f 00 (x)dx| | (b − a)| = | 2 2 a a Z b 1 00 ≤ sup f (x) |(x + A)2 + B|dx 2 x∈(a,b) a (b − a)3 = sup f (x) 12 x∈(a,b) 00 Thus we can get the error formula for the trapezoidal rule in Theorem 3.3.1 by applying this error bound to n sub intervals with the same interval length (b − a)/n. Exercise 3.5.23 (1) Z x 2 √ Z a2 − x2 dx 3 1 − xd(a2 − x2 ) 2 3 Z 3 1 2 1 2 2 32 = − (a − x ) + (a − x2 ) 2 dx 3 3 √ 3 1 1 3a4 x = − (a2 − x2 ) 2 − x(2x2 − 5a2 ) a2 − x2 + arcsin + C. 3 8 8 a = Exercise 3.5.23 (2) Z x √ Z a2 − x2 dx 3 1 − d(a2 − x2 ) 2 3 3 1 = − (a2 − x2 ) 2 + C. 3 = Exercise 3.5.26 (1) 3 Let y = 2x − 1. Then x = (y + 1)/2 and Z 2 10 1 (y + 1)2 + 1)y 10 dy 4 2 1 1 12 1 11 5 10 = ( y + y + y )dy 2 4 2 4 1 13 1 12 5 11 = y + y + y + C. 104 192 352 Z (x + 1)(2x − 1) dx = ( Z Exercise 3.5.27 (2) Z bx + c dx = x2 + a2 Z Z b 1 c 2 d(x + 1) + dx 2 2 2x +1 x + a2 b c x = log(x2 + 1) + arctan + C. 2 a a x3 √ dx = 3 x 2 + a2 Z Exercise 3.5.27 (6) Z 2 3 2 2 x d(x + a2 ) 3 4 Z 5 3 2 2 3 3 2 32 = x (x + a ) − d(x2 + a2 ) 3 4 4 5 2 5 3 9 = x2 (x2 + a2 ) 3 − x2 (x2 + a2 ) 3 + C. 4 20 Exercise 3.5.28 (6) Z Z ey sin ydy sin(log x)dx =y=log x 1 = ey (sin y − cos y) + C 2 1 = x(sin(log x) − cos(log x)) + C. 2 Exercise 3.5.28 (9) Z √ sin 2x a + cos2 xdx = − Z √ a + cos2 xd(a + cos2 x) 3 2 = − (a + cos2 x) 2 + C. 3 4 Exercise 3.5.29 (9) Z 2 Z 2 Z 2 2 Z y d(cos y) = y cos y − 2 y cos ydy = y cos y − 2 yd(sin y) Z 2 = y cos y − 2y sin y + 2 sin ydy = y 2 cos y − 2y sin y − 2 cos y + C √ = x((arccos x)2 − 2) − 2 1 − x2 arccos x + C. (arccos x) dx = Exercise Z √ 3.5.30 Z (2) Z Z √ √ x y y y e dx = e 2ydy = 2 yde = 2ye − 2 ey dy = 2yey − 2ey + C = 2( x − 1)e x + C. Exercise 3.5.30 (9) √ 2ydy , and Let y = ex + a. Then x = log(y 2 − a), dx = 2 y −a Z Z Z √ 2a 2ydy x = 2+ 2 e + adx = y 2 dy y −a y −a √ y − a √ √ + C, 2y + a log if a > 0 y + a √ y + C, if a < 0 = 2y + 2 −a arctan √ −a 2a 2y − + C, if a = 0 y √ x √ e + a − a √ x √ 2 e + a + a log √ x √ + C, if a > 0 e +√a + a √ x √ ex + a = √ 2 + C, if a < 0 e + a + 2 −a arctan −a √ x 2 e + C, if a = 0 √ √ √ √ √ 2 ex + a + ax − 2 a log( ex + a + a) + C, if a > 0 r √ √ ex = 2 ex + a + 2 −a arctan − − 1 + C, if a < 0 a 1 2e 2 x + C, if a = 0 Exercise 3.5.33 (3) Z Z 2f (x) f (x) 0 2 f (x)dx = 2f (x) df (x) = + C. log 2 Exercise 3.5.34 (2) 5 Let x := π − y, then Z I= π 0 Z (π − y)f (sin(π − y))d(π − y) xf (sin x)dx = 0 π π Z (π − y)f (sin y)dy Z π Z π yf (sin y)dy f (sin y)dy − =π 0 Z0 π f (sin y)dy − I =π = 0 0 so π Z π I= 2 f (sin y)dy 0 Exercise 3.5.35 Because φ(x) = x1 is not differentiable at 0 ∈ (−1, 1). Without change of variable, Z 1 π dx = arctan x|1−1 = . 2 2 −1 1 + x But if you insist on using the change of variable y = x1 , then Z − y12 1 −1 1+ 1 y2 Z 1 dy = − −1 dy π = − , 1 + y2 2 which is a wrong answer. Exercise 3.5.36 Z b Z f (x + t)dx = a b f (x + t)d(x + t) a Z b+t = f (y)dy a+t Z b+t Z f (y)dy − = 0 then d dt Z a+t f (y)dy 0 b f (x + t)dx = f (b + t) − f (a + t) a Exercise 3.5.38 6 If f (x) is even, then f (−x) = f (x). a Z Z 0 f (x)dx = −a a Z f (x)dx + f (x)dx Z a Z 0 f (−x)d(−x) + f (x)dx =− −a 0 Z a Z 0 f (x)dx f (y)dy + =− 0 a Z a Z a f (x)dx. f (y)dy + = −a 0 0 0 If f (x) is odd, then f (−x) = −f (x). Z a Z 0 a f (x)dx Z a f (x)dx −f (x)d(−x) + = 0 −a Z 0 Z a = f (−x)d(−x) + f (x)dx −a 0 Z 0 Z a = f (y)dy + f (x)dx a 0 Z a Z a f (x)dx = 0. f (y)dy + =− f (x)dx + f (x)dx = −a Z −a Z 0 0 0 0 Exercise 3.5.40 (1) 7 If p 6= −1, −2, Z Z √ p (1 + x) dx = (1 + y)p dy 2 Z = 2y(1 + y)p dy Z (1 + y)p+1 = 2yd p+1 Z (1 + y)p+1 2y(1 + y)p+1 −2 d(y + 1) = p+1 p+1 2 p+1 1 p+1 = (1 + y) y− +C p+1 p+2 p+2 2 (1 + y)p+1 [(p + 1)y − 1] + C = (p + 1)(p + 2) √ √ 2 = (1 + x)p+1 [(p + 1) x − 1] + C (p + 1)(p + 2) If p = −2, Z (1 + √ Z p x) dx = (1 + y)−2 dy 2 Z 2y(1 + y)−2 dy Z = − 2yd(1 + y)−1 Z 2y 1 =− +2 d(y + 1) 1+y 1+y 2y + 2 log |1 + y| + C =− 1+y √ √ 2 x √ + 2 log |1 + x| + C =− 1+ x = 8 If p = −1, Z (1 + √ Z p (1 + y)−1 dy 2 x) dx = Z 2y(1 + y)−1 dy Z 1+y−1 dy =2 1+y Z 1 dy =2 1− 1+y = 2y − 2 log |1 + y| + C = Exercise 3.5.42 (5) Recall that csc2 x = 1 + cot2 x. So Z 6 Z 4 cot x csc xdx = − Z =− cot6 x csc2 xd(cotx ) cot6 x(1 + cot2 x)d(cotx ) 1 1 = − cot7 x − cot9 x + C. 7 9 Exercise 3.5.43 (6) Recall that a sin x + b cos x = sin(x + φ), where cos φ = √ a b , sin φ = √ . 2 2 +b a + b2 a2 Then Z Z a dx dx =√ 2 2 a sin x + b cos x a + b Z sin(x + φ) a dx =√ x+φ 2 2 2 sin 2 cos x+φ a +b 2 Z a dx =√ 2 tan x+φ cos2 x+φ a2 + b 2 2 2 Z x+φ d tan 2 a =√ tan x+φ a2 + b 2 2 a x + φ =√ log tan +C 2 a2 + b 2 9 Exercise 3.5.43 (7) Z 1 + sin x dx = 1 + cos x Z Z = Z = Z = Z = + sin2 x2 + 2 cos x2 sin x2 dx 2 cos2 x2 x 1 1 2 x − tan + tan dx 2 2 2 2 1 1 x x 1 2 x − tan + tan cos2 dx 2 2 2 2 2 cos2 x2 x 1 1 1 1 2 x − tan + tan dx x 2 2 2 2 2 1 + tan 2 cos2 x2 x x 1 x d tan 1 − tan2 + 2 tan x 2 2 2 1 + tan 2 2 cos2 x 2 1 − t2 + 2t dt 1 + t2 Z 2 2t + = dt −1 + 1 + t2 1 + t2 = −t + 2 arctan t + log |1 + t2 | + C x x = − tan + x + log 1 + tan2 + C 2 2 Z = Exercise 3.5.45 We want to find A, B, C, such that Z 1 B C A sin x − − + const. dx = n n−1 n−2 (a + b cos x) (a + b cos x) (a + b cos x) (a + b cos x)n−1 Differentiate both side, then 0 1 B C A sin x − − = . (a + b cos x)n (a + b cos x)n−1 (a + b cos x)n−2 (a + b cos x)n−1 Transform all trigonometric function into cos x, we have [(2 − n)Ab + Cb2 ] cos2 x + (Aa + Bb + 2abC) cos x + Ba − 1 + (n − 1)Ab + Ca2 = 0. Let y := cos x, then [(2 − n)Ab + Cb2 ]y 2 + (Aa + Bb + 2abC)y + Ba − 1 + (n − 1)Ab + Ca2 = 0, therefore, 2 b(2 − n)A + b C = 0 aA + bB + 2abC = 0 aB + b(n − 1)A + a2 C = 1. 10 If b 6= 0, then you will find that n 6= 1 and A= b2 (3 − 2n)ab (n − 2)b ,B = 2 ,C = 2 . 2 2 2 (b − a )(n − 1) (b − a )(n − 1) (b − a2 )(n − 1) If b = 0, then a 6= 0, since |a| 6= |b|. So A = 0 and aB + a2 C = 1. That is, for all B and C satisfying aB + a2 C = 1, we still have the required equation. You can directly check this situation by letting b = 0 in the required equation. Exercise 3.5.47 (3) Z cos x+a − x−a 2 2 dx sin x−a 2 cos x+a 2 2 Z cos x+a cos x−a + sin x+a sin x−a 1 2 2 2 2 dx x−a cos a sin 2 cos x+a 2 2 Z cos x−a sin x+a 1 2 2 + dx x+a 2 cos a sin x−a cos 2 2 Z Z cos x−a sin x+a 1 2 2 dx + dx 2 cos a sin x−a cos x+a 2 2 sin x−a 1 2 log +C cos a cos x+a 2 dx 1 = sin x − sin a cos a = = = = Z Exercise 3.5.48 (9) Z 3 2 (x(x + 1)) dx = Z √ x2 + x 3 dx 3 Z p 1 2 (2x + 1) − 1) dx = 2 Z p 1 = ( y 2 − 1)3 dy 16 Z p 1 p 2 3 3 = y( y − 1) − y 2 − 1dy 2 16 64 1 p 3 = y( y 2 − 1)3 − log |y 2 − 1| + C 16 64 p 1 3 = (2x + 1)( (2x + 1)2 − 1)3 − log |(2x + 1)2 − 1| + C 16 64 3 1 3 = (2x + 1)(x2 + x) 2 − log(4x2 + 4x) + C 2 64 3 1 3 = (2x + 1)(x2 + x) 2 − log(x2 + x) + C 2 64 11 Exercise 3.5.49 (2) Z √ arctan xdx = Z arctan tdt2 Z 2 = t arctan t − t2 d(arctan t) Z 2 t +1−1 2 dt = t arctan t − t2 + 1 Z 1 2 1− 2 = t arctan t − dt t +1 = t2 arctan t − t + arctan t + C √ √ √ = ( x + 1) arctan x − x + C 12
© Copyright 2026 Paperzz