3. General Random Variables Part II: Exponen9al Random Variable ECE 302 Spring 2012 Purdue University, School of ECE Prof. Ilya Pollak Exponen9al r.v. ⎧⎪ λ e− λ x , if x ≥ 0 f X (x) = ⎨ ⎪⎩ 0, otherwise Here, λ > 0. fX(x) λ x Ilya Pollak Exponen9al r.v. ⎧⎪ λ e− λ x , if x ≥ 0 f X (x) = ⎨ ⎪⎩ 0, otherwise Here, λ > 0. ∞ Note that ∫ −∞ ∞ f X (x)dx = ∫ λ e −λx dx = −e −λx ∞ 0 = 1. 0 Ilya Pollak Mean of an exponen9al r.v. ⎧⎪ λ e− λ x , if x ≥ 0 f X (x) = ⎨ ⎪⎩ 0, otherwise ∞ E[X] = ∫ ∞ −∞ xf X (x)dx = ∫ xλ e− λ x dx 0 ∞ ∞ = ⎡⎣ −xe− λ x ⎤⎦ 0 + ∫ e− λ x dx 0 (integration by parts) 0 −λx ∞ ⎡e ⎤ 1 =⎢ = ⎥ ⎣ − λ ⎦0 λ b b Recall: ∫ uv'dx = uv a − ∫ u 'v dx b a a Above, u = x, v = −e− λ x , so v' = λ e− λ x and u ' = 1 Ilya Pollak Second moment of an exponen9al r.v. E ⎡⎣ X 2 ⎤⎦ = ∞ 2 −λx x λ e dx ∫ 0 [integrate by parts with u = x 2 , v = −e− λ x , v' = λ e− λ x and u ' = 2x] ∞ ∞ = ⎡⎣ −x 2 e− λ x ⎤⎦ 0 + ∫ 2xe− λ x dx 0 ∞ 2 = 0 + ∫ xλ e− λ x dx λ0 E[ X ]= 1 λ 2 = 2 λ Ilya Pollak Variance and standard devia9on of an exponen9al r.v. 2 1 1 var(X) = E ⎡⎣ X ⎤⎦ − ( E[X]) = 2 − 2 = 2 λ λ λ 1 σ X = var(X) = λ 2 2 Ilya Pollak Geometric CDF • Every δ seconds, flip a coin with P(H)=p. • All flips are independent. • Let X = 9me un9l first H. Then ⎧⎪ p(1 − p)k −1 , k=1,2,… p X (kδ ) = ⎨ ⎪⎩ 0, otherwise n n k =1 k =1 FX (nδ ) = P(X ≤ nδ ) = ∑ p X (kδ ) = ∑ p(1 − p)k −1 n 1 − (1 − p) = p ∑ (1 − p)m = p = 1 − (1 − p)n , n=1,2,… 1 − (1 − p) m=0 If x < δ , FX (x) = 0 If x ≥ δ , FX (x) = FX (nδ ) for nδ ≤ x < (n + 1)δ n −1 Ilya Pollak Geometric CDF ⎧⎪ 1 − (1 − p)n , for nδ ≤ x < (n + 1)δ , n=1,2,… FX (x) = ⎨ ⎪⎩ 0, for x < δ FX(x) 1 δ 2δ 3δ 4δ x Ilya Pollak Exponen9al CDF ⎧λ e- λ x , for x > 0 fY (x) = ⎨ ⎩0, for x ≤ 0 ⎧ 0, for x ≤ 0 ⎪ x FY (x) = ⎨ - λt - λt x -λ x λ e dt = − e = 1 − e , for x > 0 ⎪ ∫ 0 ⎪⎩ 0 FY(x) 1 x Ilya Pollak Exponen9al and Geometric CDFs ⎧⎪ 1 − (1 − p)n , for nδ ≤ x < (n + 1)δ , n=1,2,… ⎧1 − e- λ x , for x > 0 FY (x) = ⎨ FX (x) = ⎨ 0, for x ≤ 0 ⎩ ⎪⎩ 0, for x < δ ln(1 − p) Defining δ = − , we have e- λδ = 1 − p, and therefore λ ⎧⎪ 0, for n ≤ 0 ⎧⎪ 0, for n ≤ 0 FY (nδ ) = ⎨ =⎨ = FX (nδ ) n - λδ n ⎪⎩ 1 − e , for n ≥ 1 ⎪⎩ 1 − (1 − p) , for n ≥ 1 1 FY(x) Geometric CDF with p = 1 − e- λδ δ 2δ 3δ 4δ As δ → 0, FX → FY x ln(1 − p) is the limit δ of the geometric, as p → 0 and # experiments per unit time → ∞. In this sense, the exponential r.v. with parameter λ = − Ilya Pollak
© Copyright 2026 Paperzz