Lecture 19Section 10.5 Indeterminate Form (0/0) Section 10.6 Other Indeterminate Forms (∞/∞), (0 · ∞), · · · Jiwen He 1 Indeterminate Forms 1.1 Indeterminate Form (0/0) Exampleis 1. What the Indeterminate Form (0/0)? x−2 1 1 1 x−2 = lim = lim = = 2 x→2 x→2 x −4 (x − 2)(x + 2) x+2 2+2 4 f 0 (x) 1 1 1 = lim = = (Amazing!!) (L’Hôpital’s Rule) = lim 0 x→2 g (x) x→2 2x 2·2 4 lim x→2 As x → 2, f (x) = x − 2 → 0 and g(x) = x2 − 4 → 0, but the quotient f (x) x−2 0 = 2 → . g(x) x −4 0 We can not determine a value for “ 00 ” without some extra work! f (x) might equal any number or even fail g(x) to exist! [1ex] Condensed: The “form” 00 is indeterminate. If lim f (x) = lim g(x) = 0, then lim x→a 1.2 x→a x→a Other Indeterminate Forms Indeterminate Forms Indeterminate Forms • The most basic indeterminate form is 00 . f (x) x→a g(x) • It is indeterminate because, if lim f (x) = lim g(x) = 0, then lim x→a x→a might equal any number or even fail to exist! sin x e−x , lim , ···. x→∞ sin(1/x) x→0 x • Specific cases: lim • The forms ∞ ∞ and 0 · ∞ are also indeterminate. 1 • They are actually equivalent to 00 , since any specific case of one can be recast as a specific case of another. • For example, x ln x = lim 1/x x→0+ 1/ ln x ∞ 0 ∞ 0 lim x ln x = lim x→0+ x→0+ 0·∞ Quiz Quiz n n+2 ∞ n 1+ n+2 ∞ 1− 1. Give the limit for (a) 0, 2. Give the limit for (a) 0, 2 2.1 n=1 (b) 1, (c) 2. n=1 (b) 1, (c) 2. L’Hôpital’s Rule L’Hôpital’s Rule L’Hôpital’s Rule L’Hôpital’s Rule f (x) 0 ∞ f (x) f 0 (x) Suppose that lim is a or . Then lim = lim 0 x→? g(x) x→? g(x) x→? g (x) 0 ∞ Examples 2. 0 1 x−2 1 1 = lim lim 2 = = x→2 x − 4 x→2 2x 0 2·2 4 sin x lim x→0 x 0 cos x 1 = lim = =1 x→0 0 1 1 x − sin x lim x→0 x sin x 0 1 − cos x 0 = lim still x→0 sin x + x cos x 0 0 = lim x→0 0 sin x = =0 cos x + cos x − x sin x 2 2 What is Wrong with This? What is wrong with the following argument? x2 0 2x 2 2 lim = lim = lim = = −∞ 0 −0 x→0+ sin x x→0+ cos x x→0+ − sin x Remark L’Hôpital’s rule does not apply in cases where the numerator or the denominator has a finite non-zero limit!!! For example, 2x 0 lim = = 0, 1 x→0+ cos x but a blind application of L’Hôpital’s rule leads incorrectly to 2 2x 2 = lim+ = = −∞ lim+ cos x − sin x −0 x→0 x→0 Quiz Quiz 3. Give the limit for n 1 o∞ nn n=1 (a) 1, (b) 2, (c) e. 4. Give the limit for (a) 1, 3 3.1 1+ 1 n n ∞ n=1 (b) 2, (c) e. More Examples Form 0 0 Form 00 3. Examples 0 cos x − 1 0 = lim still! x→0 0 3x2 0 − sin x 0 − cos x −1 = lim still! = lim = x→0 x→0 6x 0 6 6 sin x − x lim x→0 x3 2 cos x − 2 + x2 x→0 x4 lim −2 sin x + 2x 0 0 = lim still! x→0 0 4x3 0 −2 cos x + 2 0 still! = lim x→0 12x2 0 2 sin x 0 2 cos x 2 1 = lim still! = lim = = x→0 24x x→0 0 24 24 12 3 3.2 Form ∞ ∞ ∞ Form ∞ Examples 4. 2x ∞ x2 ∞ = lim still! x→∞ ex x→∞ ex ∞ ∞ lim = lim x→∞ 2 2 = =0 ex ∞ 3x ln 2 + 2x ln 2 ln(3x + 2x ) ∞ = lim x→∞ x→∞ x ∞ 3x + 2x lim ln 3 + 0 ln 3 + (2/3)x ln 2 = = ln 3 x→∞ 1 + (2/3)x 1+0 = lim 3.3 Limit Properties of ln x and ex Limit Properties of ln x lim xα ln x = 0, x→0+ α > 0. Proof. ln x ∞ ∞ x→0 x−α xα 1/x = lim =0 = lim+ x→0+ −α x→0 −αx−α−1 lim+ xα ln x (0 · ∞) = lim+ x→0 lim x→∞ ln x = 0, xα α > 0. Proof. ln x ∞ 1 1/x = lim = lim =0 x→∞ xα x→∞ αxα−1 x→∞ αxα−1 ∞ lim Remark • ln x tends to infinity slower than any positive power of x. • Any positive power of ln x tends to infinity slower than x. 4 Limit Properties of ex xn = 0. x→∞ ex lim Proof. xn ∞ nxn−1 ∞ = lim x→∞ ex x→∞ ∞ ex ∞ n−2 ∞ n(n − 1)x = lim x→∞ ex ∞ lim = ··· = lim x→∞ n! n! = =0 ex ∞ Remark ex tends to infinity fasterr than any positive power of x. 3.4 Exponential Forms: 1∞ , 00 , and ∞0 Exponential Forms: 1∞ , 00 , and ∞0 Since ln xp = p ln x, the log can be used to convert each of exponential forms 1∞ , 00 , and ∞0 to 0 · ∞: ln(1∞ ) = ∞ · 0, ln(00 ) = ∞ · 0, ln(∞0 ) = 0 · ∞. If lim ln f (x) = L, then lim f (x) = eL . x→? x→? Example 5. lim+ xx 00 = e0 = 1 x→0 lim ln(xx ) ln 00 x→0+ = lim+ x ln x (0 · ∞) x→0 1/x ln x ∞ = lim = lim (−x) = 0 = lim ∞ x→0+ 1/x x→0+ x→0+ −1/x2 Examples 6. More Exponential Forms: 1∞ , 00 , and ∞0 lim x1/x ∞0 = e0 = 1 x→∞ lim (1 + x)1/x (1∞ ) = e1 = e x→0+ 5 ln x ∞ 1/x = lim =0 x→∞ x x→∞ x→∞ 1 ∞ ln(1 + x) 0 1/x ∞ lim ln(1 + x) (ln 1 ) = lim x 0 x→0+ x→0+ 1 = lim =1 x→0+ 1 + x ln ∞0 lim ln x1/x = lim 1 • Set x = n, we have the familiar result: as n → ∞, n n → 1. n • Set x = 1/n, we have: as n → ∞, 1 + n1 → e. 3.5 Form ∞ − ∞ Form ∞ − ∞ The form ∞ − ∞ can be handled by converting it to a quotient. lim x→(π/2) (tan x − sec x) (∞ − ∞) = − = lim x→∞ lim x→(π/2)− x+e−x e x −e = lim x→∞ x→(π/2)− sin x − 1 cos x 0 0 cos x 0 = =0 − sin x −1 (∞ − ∞) = lim x→∞ ee lim ee −x −1 e−x 0 0 −x −x (−e−x ) = lim ee = e0 = 1 −x x→∞ −e sin x 1 sin x − 1 − = cos x cos x cos x −x −x ee − 1 − ex = ex ee − 1 = e−x tan x − sec x = ex+e −x Outline Contents 1 Indeterminate Forms 1.1 (0/0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 (∞/∞) and Others . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 1 2 L’Hôpital’s Rule 2.1 Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 6 3 Examples 3.1 00 . . . . . . 3.2 ∞ ∞ . . . . . 3.3 ln x and ex 3.4 Exponential 3.5 ∞ − ∞ . . . . . . . . . . . . . . Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 4 4 5 6
© Copyright 2026 Paperzz