2 Notes Pythagorean Identity.notebook May 13, 2015 Pythagorean Identity EQ: How do I use the Pythagorean Theorem to solve angles of triangles? MCC912.F.TF.8 Prove the Pythagorean Identity (sin A)2 + (cos A)2 = 1 and use it to find sin A, cos A, or tan A, given sin A, cos A, or tan A, and the quadrant of the angle. May 137:43 AM The Pythagorean Identity (sin A)2 + (cos A)2 = 1 or sin2A + cos2A = 1 May 137:45 AM 1 2 Notes Pythagorean Identity.notebook May 13, 2015 Proof May 137:46 AM Limits on domains sine and cosine: [1, 1] tangent: (∞,∞) May 137:55 AM 2 2 Notes Pythagorean Identity.notebook May 13, 2015 We find the signs of the trig functions dependent on their quadrants Quadrant Measure Trig Ratios I II III IV May 137:55 AM If sin A = 2/3 and 0o < A < 90o Find cos A Find tan A May 137:47 AM 3 2 Notes Pythagorean Identity.notebook May 13, 2015 If cos A = 3/4 and 180o < A < 270o Find sin A Find tan A May 137:47 AM If tan A = 4/3 and 180o < A < 270o Find sin A Find cos A May 137:47 AM 4 2 Notes Pythagorean Identity.notebook May 13, 2015 If sin A = 1/3 and 3π/2 < A < 2π Find cos A Find tan A May 137:47 AM May 137:57 AM 5
© Copyright 2026 Paperzz