PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 133, Number 5, Pages 1257–1265 S 0002-9939(04)07863-3 Article electronically published on December 15, 2004 EULER’S INTEGRALS AND MULTIPLE SINE FUNCTIONS SHIN-YA KOYAMA AND NOBUSHIGE KUROKAWA (Communicated by David E. Rohrlich) Abstract. We show that Euler’s famous integrals whose integrands contain the logarithm of the sine function are expressed via multiple sine functions. 1. Introduction π Euler studied the definite integrals 02 xn log(sin x)dx for n = 0 and 1. In [E1] (1769), he proved the famous result π2 π (1) log(sin x)dx = − log 2, 2 0 which is frequently explained as an example of tricky integrals in analysis courses. A bit later, Euler [E2] (1772) stated that π2 ∞ 1 1 π2 log 2 x log(sin x)dx = − 2 n3 4 0 n=1 n:odd = (2) 7 π2 ζ(3) − log 2. 16 8 Euler proved (1) by using (3) log(sin x) = − ∞ cos(2nx) − log 2 n n=1 for 0 < x < π. The actual integration is obvious since π2 cos(2nx)dx = 0 0 for n = 1, 2, 3, · · · . Hence, the original proof of Euler is not tricky contrary to the usual explanation. In the case of (2), Euler primarily wanted to calculate the value ζ(3). He started from the divergent series expression ζ(3) = = −4π 2 ζ (−2) ∞ 4π 2 n2 log n n=1 Received by the editors August 4, 2003. 2000 Mathematics Subject Classification. Primary 11M06. c 2004 American Mathematical Society Reverts to public domain 28 years from publication 1257 License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use 1258 SHIN-YA KOYAMA AND NOBUSHIGE KUROKAWA and by investigating it he reached (2). Thus his arguments are difficult to follow and literally invalid. Moreover Euler did not prove the functional equation ζ(3) = −4π 2 ζ (−2) conjectured by himself in [E3]. We notice that when we use (3) we can give a secure calculation for (2): π2 π ∞ 1 2 π2 log 2 x log(sin x)dx = − x cos(2nx)dx − n 0 8 0 n=1 with integration by parts 0 π 2 1 − 2 2n x cos(2nx)dx = 0 if n is odd, if n is even. It might be remarkable that Euler missed this way. In this paper we investigate definite integrals x θr−2 log(sin θ)dθ 0 for r = 2, 3, 4, · · · containing Euler’s case x = π/2 from the point of view of multiple sine functions. Let ∞ x nr−1 xr−1 Sr (x) = e r−1 Pr n n=−∞ n=0 = e xr−1 r−1 ∞ Pr n=1 x (−1)r−1 nr−1 Pr − n n x be the multiple sine function studied in [K1, K2, KK1, KK2, KOW, KW], where ur u2 + ···+ Pr (u) = (1 − u) exp u + . 2 r For example, ∞ 1− S2 (x) = ex n=1 S3 (x) = e x2 2 and S4 (x) = e x3 3 ∞ n=1 1+ x n x n n e2x , n2 2 x2 ex 1− 2 n n=1 ∞ 1− 1+ x n x n n3 e 2n2 x+ 23 x3 . Then we show the following result. Theorem 1. For 0 ≤ x < π and for r = 2, 3, 4, ..., we have x x π r−1 xr−1 log(sin x) − log Sr . θr−2 log(sin θ)dθ = r−1 r−1 π 0 License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use EULER’S INTEGRALS AND MULTIPLE SINE FUNCTIONS 1259 In particular we have: Theorem 2. For r = 2, 3, 4, ..., π2 1 π r−1 r−2 log Sr θ log(sin θ)dθ = − . r − 1 2 0 Examples. 0 1 = −π log S2 2 n ∞ 1 2n − 1 = −π log e 2 e , 2n + 1 n=1 π 2 log(sin θ)dθ (4) π 2 0 θ log(sin θ)dθ = (5) = 1 π2 − log S3 2 2 n2 ∞ 1 1 π2 1 , e4 − log e 8 1− 2 2 4n n=1 1 π3 θ log(sin θ)dθ = − log S4 3 2 0 n3 ∞ 1 2n − 1 π3 1 = − log e 24 exp n2 + (6) . 3 2n + 1 12 n=1 √ 1 from Euler’s We notice that we have S2 12 = 2 and S3 12 = 2 4 exp − 7ζ(3) 2 8π π 2 2 results (1) and (2) combined with (4) and (5). We demonstrate a calculation of the special value S4 12 from the product expression directly as follows. Theorem 3. S4 and 0 π 2 1 1 9ζ(3) = 2 8 exp − 2 16π 2 θ2 log(sin θ)dθ = π3 3π ζ(3) − log 2. 16 24 In our calculation a generalization of the Stirling formula is crucial. 2. Multiple sine functions To make this paper self-contained we prove some basic properties of multiple sine functions. For general background we refer to [KK1, KK2, KOW, M]. Proposition 1. For r = 2, 3, 4, ..., Sr (x) is a meromorphic function in x ∈ C and it satisfies Sr (x) = πxr−1 cot(πx). Sr (x) License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use 1260 SHIN-YA KOYAMA AND NOBUSHIGE KUROKAWA Proof. The fact that Sr (x) is a meromorphic function in x ∈ C (and its order as a meromorphic function being r) is seen from the product expression defining Sr (x). Let us calculate the logarithmic derivative. From ∞ x x (−1)r−1 nr−1 xr−1 r−1 Pr − Sr (x) = e Pr n n n=1 we have log Sr (x) = = ∞ x x xr−1 + + (−1)r−1 log Pr − nr−1 log Pr r − 1 n=1 n n ∞ xr−1 x x + + (−1)r−1 log 1 + nr−1 log 1 − r − 1 n=1 n n x 1 x 2 1 x r + + ··· + + n 2 n r n 2 r −x −x −x 1 1 +(−1)r−1 + ···+ . + n 2 n r n Hence ∞ Sr (x) 1 xr−1 (−1)r−1 1 x nr−1 = xr−2 + + + + 2 + ··· + r Sr (x) x−n x+n n n n n=1 x xr−1 1 +(−1)r−1 − + 2 + · · · + (−1)r r . n n n Here ( x )r − 1 x xr−1 1 + 2 + ···+ r = n n n n x−n and − (−1)r ( nx )r − 1 1 x xr−1 + 2 + · · · + (−1)r r = . n n n x+n Thus Sr (x) Sr (x) = r−2 x + ∞ n r−1 n=1 ∞ ( nx )r ( x )r − n x−n x+n 2xr x2 − n2 n=1 = xr−2 + = πxr−1 cot(πx), where we used ∞ π cot(πx) = 1 2x + . x n=1 x2 − n2 Proposition 2. For 0 ≤ x < 1 and for r = 2, 3, 4, ..., x log Sr (x) = πtr−1 cot(πt)dt. 0 Proof. Since Sr (0) = 1, both sides are 0 at x = 0. Hence it is sufficient to remark that the differentiations of both sides are πxr−1 cot(πx) from Proposition 1. License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use EULER’S INTEGRALS AND MULTIPLE SINE FUNCTIONS 1261 3. Euler’s integrals Using Proposition 2 we show Theorems 1 and 2. Proof of Theorems 1 and 2. By integration by parts in x log Sr (x) = πtr−1 cot(πt)dt 0 we have log Sr (x) = = x log(sin πt) 0 − x (r − 1)tr−2 log(sin πt)dt x tr−2 log(sin πt)dt. xr−1 log(sin πx) − (r − 1) t r−1 0 0 Hence changing the variable to θ = πt in the integral, we have r − 1 πx r−2 log Sr (x) = xr−1 log(sin πx) − r−1 θ log(sin θ)dθ. π 0 This gives Theorem 1. Then, letting x = 1/2 we have Theorem 2. Examples. 1 π log(sin θ)dθ = − log 2 − π log S2 , 8 4 0 √ π 3 1 3 π − π log S2 log(sin θ)dθ = log , 3 2 3 0 π4 1 π2 π2 log S3 θ log(sin θ)dθ = − log 2 − , 64 2 4 0 √ π3 π2 1 3 π2 log − log S3 θ log(sin θ)dθ = . 18 2 2 3 0 π 4 4. A calculation of the special value Proof of Theorem 3. Since n3 ∞ 1 2n − 1 1 1 2 24 S4 exp n + =e , 2 2n + 1 12 n=1 we put AN 1 2 = e exp n + 12 n=1 N 3 3 1 N + (12 + · · · + N 2 ) + (2n − 1)n −(n−1) = exp × 24 12 n=1 1 24 N 2n − 1 2n + 1 ×(2N + 1)−N n3 3 and show 1 8 lim AN = 2 exp N →∞ 1 9 9ζ(3) 8 ζ (−2) = 2 exp − . 4 16π 2 License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use 1262 SHIN-YA KOYAMA AND NOBUSHIGE KUROKAWA Then the value of the integral follows from (6). We use the Stirling formula N! = N n∼ √ 1 2πN N + 2 e−N n=1 and its generalization N nn ∼ exp (−ζ (−2)) N 2 N3 3 2 3 N + N2 + N − N9 + 12 6 e , n=1 which follow from the Euler-Maclaurin summation formula for ζ (s): ζ (s) = lim N →∞ − N n−s log n + n=1 N 1−s N 1−s log N − 1−s (1 − s)2 1 s 1 + N −s log N − N −s−1 log N + N −s−1 2 12 12 valid in Re(s) > −3. We refer to Hardy [H], Chap. XIII, for the Euler-Maclaurin summation formula and its applications. Then, letting s = 0 and −2 we see 1 lim log n − N+ log N − N N →∞ 2 n=1 N! lim log 1 N →∞ N N + 2 e−N √ log 2π = −ζ (0) = = N and −ζ (−2) = = lim N →∞ N n log n − n=1 N lim log N →∞ 2 N N3 3 N3 N2 N + + 3 2 6 2 n n=1 n N3 N +N 6 e− 9 + 12 2 + N2 N N3 + log N − 9 12 . Using N (2n − 1)n 3 −(n−1)3 = n=1 N (2n − 1)3n 2 −3n+1 n=1 = = N 34 (2n−1)2 (2n − 1) n=1 2N N n n=1 n 2 (2n)2 n=1 (2n) × N 14 (2n − 1) n=1 34 × 2N License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use n=1 n N n=1 (2n) 14 EULER’S INTEGRALS AND MULTIPLE SINE FUNCTIONS 1263 and the (generalized) Stirling formulas 2N nn ∼ e−ζ 2 (−2) (2N ) 8N 3 3 3 N +2N 2 + N − 8N 3 9 + 6 e , n=1 N (2n)(2n) = 24(1 2 2 +···+N ) 2 n=1 N 4 nn 2 n=1 ∼ 2 3 N (N +1)(2N +1) e−ζ 2 2N n∼ (−2) N N3 3 2 + N2 3 N +N − N9 + 12 6 4 e , √ 1 2π(2N )2N + 2 e−2N , n=1 N (2n) = 2N n=1 N n∼ √ 1 2πN N + 2 e−N 2N , n=1 we have AN ∼ exp ×e 4 ζ 9 1 + 24 (−2) N N N3 N2 N + + 3 2 6 NN 3 −N 4 2N 3 −N 4 e− N3 3 + N 12 −N 8 N ×N 4 2 4 + 8 e− 4 × (2N + 1)−N . 1 3 Hence, combining with −N 3 (2N + 1) −N 3 1 = (2N ) 1+ 2N 1 −N 3 3 = (2N ) exp −N log 1 + 2N 2 3 1 1 1 1 1 −N 3 3 − ∼ (2N ) exp −N + 2N 2 2N 3 2N −N 3 −N 3 = (2N ) N 1 N2 + − exp − , 2 8 24 we obtain the desired result 1 8 lim AN = 2 exp N →∞ 9 ζ (−2) . 4 License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use 1264 SHIN-YA KOYAMA AND NOBUSHIGE KUROKAWA √ Remarks. (1) The fact that S2 ( 12 ) = 2 is also proved as Theorem 3 and we get (1) again from (4). In fact: ∞ 1 n 1 − 2n 1 1 S2 e = e2 1 2 1 + 2n n=1 n N 1 2n − 1 2 e = lim e N →∞ 2n + 1 n=1 N 1 2 3 2N − 1 1 3 5 1 N = lim e 2 ··· e N →∞ 3 5 7 2N + 1 1 3 · 5 · · · (2N − 1) N = lim e 2 e N →∞ (2N + 1)N 1 (2N )! N = lim e 2 1 Ne N →∞ N !22N N N (1 + 2N ) √ = 2 by the (usual) Stirling formula. (2) The case of S3 (1/2) is similar by using the generalized Stirling’s formula: n2 ∞ 1 1 1 1 S3 e4 1− 2 = e8 2 4n n=1 n2 N 1 1 1 8 = lim e e4 1− 2 N →∞ 4n n=1 n2 N N 1 (2n − 1)(2n + 1) = lim e 4 + 8 N →∞ (2n)2 n=1 1/2 2N 1 n2 2 n n=1 (2N )! 2 N (2N + 1)N + 18 4 = lim e × 4(12 +···+N 2 ) 4 × N →∞ 2N N ! 2 N n2 n n=1 1 7 ζ (−2) . = 2 4 exp 2 Thus we obtain Euler’s formula √ (2) via (5). (3) Except for S2 (1/2) = 2 we do not know the algebraicity of Sr (1/2) for r ≥ 2. In fact we cannot deny even the optimistic expectation Sr (1/2) ∈ 2Q . Acknowledgement We thank the referees for their suggestions to refine the presentation. References [E1] [E2] L. Euler “De summis serierum numeros Bernoullianos involventium” Novi commentarii academiae scientiarum Petropolitanae 14 (1769) 129-167 [Opera Omnia I-15, pp.91-130]. L. Euler “Exercitationes analyticae” Novi commentarii academiae scientiarum Petropolitanae 17 (1772) 173-204 [Opera Omnia I-15, pp.131-167]. License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use EULER’S INTEGRALS AND MULTIPLE SINE FUNCTIONS 1265 [E3] L. Euler “Remarques sur un beau rapport entre les séries des puissances tant directes que réciproques” Mémoires de l’académie des sciences de Berlin 17 (1761) 83-106 (Lu en 1749) [Opera Omnia I-15, pp. 70-90]. [H] G.H. Hardy “Divergent Series” Oxford Univ. Press 1949. MR0030620 (11:25a) [K1] N. Kurokawa “Multiple sine functions and Selberg zeta functions” Proc. Japan Acad. 67A (1991) 61-64. MR1105522 (92d:11094) [K2] N. Kurokawa “Multiple zeta functions: an example” Adv. Stud. in Pure Math. 21 (1992) 219-226. MR1210791 (94f:11084) [KK1] N. Kurokawa and S. Koyama “Multiple sine functions” Forum Math. 15 (2003) 839-876. MR2010282 (2004g:11077) [KK2] S. Koyama and N. Kurokawa “Kummer’s formula for multiple gamma functions” J. Ramanujan Math. Soc. 18 (2003) 87-107. MR1966530 (2004a:33003) [KOW] N. Kurokawa, H. Ochiai and M. Wakayama “Multiple trigonometry and zeta functions” J. Ramanujan Math. Soc. 17 (2002) 101-113. MR1913896 (2003f:11132) [KW] N. Kurokawa and M. Wakayama “On ζ(3)” J. Ramanujan Math. Soc. 16 (2001) 205-214. MR1863604 (2002i:11083) [M] Yu. I. Manin “Lectures on zeta functions and motives (according to Deninger and Kurokawa)” Astérisque 228 (1995) 121-163. MR1330931 (96d:11076) 2-5-27 Hayabuchi, Tsuzuki-ku, Yokohama 224-0025, Japan E-mail address: [email protected] Department of Mathematics, Tokyo Institute of Technology, 152-8551, Tokyo, Japan E-mail address: [email protected] License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
© Copyright 2026 Paperzz