ADCHAM - A multilayer aerosol dynamics, gas and particle chemistry chamber model P. Roldin1, E.Z. Nordin2, A.C. Eriksson1, D. Mogensen3, A. Rusanen3, E. Swietlicki1, M. Boy3 and J. Pagels2 1 Division of Nuclear Physics, Lund University, P.O. Box 118 SE-221 00 Lund, Sweden 2 Ergonomics and Aerosol Technology, Lund University, Lund, Sweden 3 Atmospheric Sciences Division, Department of Physics, University of Helsinki, Finland Keywords: Secondary organic aerosol, multilayer, aerosol dynamics, gas phase chemistry Laboratory experiments show that SOA particles can form a solid or semi-solid amorphous phase (e.g. Virtanen et al., 2010). If an amorphous solid phase is formed gas to particle partitioning will not be well represented by a thermodynamic equilibrium process (Pöschl, 2011). ADCHAM combines an updated version of the aerosol dynamics and particle phase chemistry module from ADCHEM (Roldin et al., 2011) and the gas phase Master Chemical Mechanism (MCMv3.2). ADCHAM explicitly treats the bulk diffusion of all compounds (including O3) between different particle layers and bulk reactions analogous to Shiraiwa et al. (2010). For all compounds except O3 the gas-surface exchange is modeled with a condensation/evaporation equation which considers the gas-surface diffusion limitations and non-unity dissolution probability in the surface bulk layer (mass accommodation). In each particle layer the model considers oligomerization, equilibrium reactions between crystalline inorganic salts and their dissolved ions, and oxidation of SOA with O3. The oligomerization and solid salt formation increases the viscosity of the particle bulk which limits the diffusion of the liquid compounds. We estimate the pure liquid saturation vapor pressures, , using either the group contribution method SIMPOL (Pankow & Asher, 2008) or the method by Nannoolal et al. (2008). The corresponding equilibrium vapor pressures over each particle size are derived with Raoult’s law, using the activity coefficients calculated with AIOMFAC (Zuend et al., 2011) and the Kelvin effect. ADCHAM is currently used to model smog chamber experiments for both anthropogenic and biogenic SOA. Figure 1 shows the model layer structure when modeling SOA and NH4NO3 formation on dry (NH4)2SO4 particles. Figure 2a illustrates modeled evaporation time scales for αpinene SOA particles in vacuum, 1) when SOA is liquid-like, 2) when SOA is amorphous (solid), 3) when SOA particles are amorphous and partly oxidized with O3 forming 50 % non-volatile and 50 % more volatile ( 1 ) oxidation products, and 4) when SOA is amorphous and partly oligomerized. The slow evaporation of amorphous particles is due to the accumulation of low or non-volatile (NV) compounds in the particle surface layer (Fig 2b). Gas phase Monom. NH3 HNO3 H2SO4 O3 Near surf. gas phase Monom. NH3 HNO3 H2SO4 Surf. mono layer O3 O3 Bulk , 1 Monom.→Oligom., Monom.+O3→Ox. Prod NH4NO3(s) ↔ NH4+ (aq) + NO3-(aq) (NH4)2SO4(s) ↔ 2NH4+ (aq) + SO4-2(aq) Bulk, 2 Monom.→Oligom., Monom.+O3→Ox. Prod NH4NO3(s) ↔ NH4+ (aq) + NO3-(aq) (NH4)2SO4(s) ↔ 2NH4+ (aq) + SO4-2(aq) … Bulk, n-1 Monom.→Oligom , Monom.+O3→Ox. Prod NH4NO3(s) ↔ NH4+ (aq) + NO3-(aq) (NH4)2SO4(s) ↔ 2NH4+ (aq) + SO4-2(aq) Bulk, n Monom.→Oligom., Monom.+O3→Ox. Prod NH4NO3(s) ↔ NH4+ (aq) + NO3-(aq) (NH4)2SO4(s) ↔ 2NH4+ (aq) + SO4-2(aq) Core (NH4)2SO4(s) Figure 1. Model layer structure. Figure 2. a) modeled SOA evaporation, b) fraction of SOA+O3(p) oxidation products from simulation 3 and oligomer mass fraction from simulation 4, in each particle layer after 3 hours of evaporation. Nannoolal, J., Rarey, J., Ramjugernath, D., (2010), Fuild Phase Equilibria, 269, 117-133 Pankow, J. F. & Asher, W. E. (2008), Atmos. Chem. Phys., 8, 2773–2796 Pöschl, U., (2011), Atmos. Res. 101, 562–573. Roldin et al., (2011), Atmos. Chem. Phys., 11, 58675896 Virtanen et al., (2010), Nature, 467, 824-827. Zuend et al., (2011), Atmos. Chem. Phys., 11, 9155– 9206 Shiraiwa, M., Pfrang, C., Pöschl, U., (2010), Atmos. Chem. Phys., 10, 3673–3691
© Copyright 2026 Paperzz