Applying the Zero Product Property to Solve Equations

Name ________________________________________ Date ___________________ Period _________________
LESSON
20-3
Applying the Zero Product Property to Solve Equations
Practice and Problem Solving: A/B
Find the zeros of each function.
1. f(x)  (x  3)(x  5)
________________________________________
3. f(x)  (x  1)(x  1)
________________________________________
5. f(x)  x(x  3)
________________________________________
7. f(x)  (x  11)(x  1)
________________________________________
9. f(x)  (5x  1)(3x  8)
________________________________________
2. f(x)  x(x  1)
________________________________________
4. f(x)  (x  5)(x  1)
________________________________________
6. f(x)  (x  6)(x  1)
________________________________________
8. f(x)  2(x  13)(x  5)
________________________________________
10. f(x)  (2x  7)(3x  2)
________________________________________
Rewrite each equation in standard form.
11. f(x)  (x  5)(x  8)
________________________________________
13. f(x)  -2(x  5)(x  8)
________________________________________
11. f(x)  2(x  7)(x  2)
________________________________________
14. f(x)  -½ (2x  4)(x  2)
________________________________________
Use the Distributive Property and the Zero Product Property to solve find zeros of the equations.
15. f(x)  2x(x 2)  14(x  2)
________________________________________
17. f(x)  5x(x  3)  25(x  3)
________________________________________
16. f(x)  x(x  4)  2(x  4)
________________________________________
18. f(x)  3x(x  7)  7x  49
________________________________________
Solve.
19. The height of a javelin after it has left the hand of the thrower can be modeled by the
function h  3(4t  2)(t  4), where h is the height of the javelin and t is the time in
seconds. How long is the javelin in the air?
_________________________________________________________________________________________
20. The height of a flare fired from the deck of a ship can be modeled by
h  (4t  24)(4t  4) where h is the height of the flare above water in feet and t is the time
in seconds. Find the number of seconds it takes the flare to hit the water.
_________________________________________________________________________________________
LESSON 20-3
Practice and Problem Solving: A/B
1. x  3, x  5
2. x  0, x  1
3. x  1
4. x  5, x  1
5. x  0, x  3
6. x  6, x  1
7. x  11, x  1
8. x  13, x  5
9. x  5, x  8
10. x  7, x  2
15. x  7, x  2
16. x  2, x  4
17. x  5, x  3
18. x  
19. 4 s
20. 6 s
7
, x7
3