反微分與不定積分 及其性質 1. 2. 3. 4. 反微分(Antiderivatives) 不定積分(Indefinite Integral) 積分規則(Rules of Integration) 替代法(Substitution) page 358~379 Definition of Antiderivative: If F’(x)=f(x), then F(x) is an antiderivative of f(x) Example | EX1(a) F(x)=10x, F’(x)=10 Æ F(x) is an antiderivative of f(x)=10 Example | EX1(b) 2 x F(x)= , F’(x)=2x Æ F(x) is an antiderivative of f(x)=2x Example | 4 5x EX2 Find an antiderivative of f(x)= g ( x) = x n , g ′( x) = nx n−1 Æ g ′( x) = nx n −1 is an antiderivative of g ( x) = x n 4 When n=5, x is an antiderivative of 5x 1 n+1 n Æ An antiderivative of x is n + 1 x n Example | EX3 Find an antiderivative ofx f(x)= x e e let F(x)= and F’(x)= =f(x) ex Æ F(x) is an Antiderivative of f(x) Notice F(x)= e x and F’(x)=e x let G(x)= e x +2 and G’(x)= e x =f(x) x e let H(x)= e +100 and H’(x)= =f(x) x Æ F(x), G(x) and H(x) are antiderivative of f(x) x e Antiderivatives of f(x) differ by a constant Property of Antiderivatives If F(x) and G(x) are both antiderivatives of a function f(x) on an interval, then there is a constant C such that F(x)-G(x)=C The arbitrary real number C is called an integration constant (積分常數) EX: F(x)=2x+2 and F’(x)=2 G(x)=2x+100 and G’(x)=2 H(x)=2x+10000 and H’(x)=2 Indefinite Integral | The family of all antiderivative of f(x) (F’(x) = f(x)) is indicated by ∫ f ( x)dx = F ( x) + C where C : Integral Constant ∫ : Integral Sign(積分符號) f(x) : Integrand(積分函數) dx : integral of f(x) with respect to x | ∫ f ( x)dx is called an Indefinite Integral Power Rule | For any real number n ≠ −1, x dx = +C ∫ EX4 Use the power rule to find each indefinite integral. n (a) (b) (c) (d) x n +1 n +1 t 3 +1 t4 ∫ t dt = 3 + 1 + C = 4 + C − 2 +1 1 t −2 dt t = ∫ t2 ∫ dt = − 2 + 1 + C = 1 1 2 +1 t 2 t dt t = ∫ ∫ dt = 1 2 + 1 + C = t 0 +1 0 ∫ 1dt = ∫ t dt = 0 + 1 + C = t + 3 − 1 +C t 2 32 t +C 3 C Constant Multiple Rule and Sum or Difference Rule | If all indicated integrals exist, ∫ a ⋅ f ( x)dx = a ∫ f ( x)dx and ∫ [ af ( x) ± bg ( x)] dx = a∫ f ( x)dx ± b∫ g ( x)dx for any real number a, b Example: Find f ( x) = x 4/3 → ∫ x 4 / 3 dx = 73 x 7 / 3 +C Example: Find 2 (3x ∫ + 4x)dx 2 2 ( 3 x + 4 x ) dx = 3 x ∫ ∫ dx + 4∫ xdx 2 x3 x2 x = 3( +C 1) + 4( + C2 ) = x 3 + +C 3 2 2 because C1,C2 are constants. Then we can use C to represent integral constant where C = C 1 +C2 EX5 Use the rules to find each integral. (a) 3 3 2 ν d ν = 2 ν ∫ ∫ dν (by constant multiple rule) ν3+1 1 4 =2 +C = ν +C (by power rule) 3+1 2 12 (b) ∫ 5 dz = 12 ∫ z −5 dz z z − 5 +1 = 12 + C = − 3 z −4 + C −5 + 1 EX6 Use the rules to find each integral (c) 4 2 x − 1 dx = x − 2 x + 1) dx ) ∫( ∫( 2 2 x 4+1 x 2+1 = −2 + x+C 4 +1 2 +1 EX5 Use the rules to find each integral. (a) 3 3 2 ν d ν = 2 ν ∫ ∫ dν (by constant multiple rule) ν3+1 1 4 =2 +C = ν +C (by power rule) 3+1 2 12 (b) ∫ 5 dz = 12 ∫ z −5 dz z z − 5 +1 = 12 + C = − 3 z −4 + C −5 + 1 Review of Derivative of Exponential Function | x x e e f(x) = Æ f’(x) = | f(x) = a = e | kx kx e f(x) = Æ f’(x) = ke | kx kx ln a a = e f(x) = Æ f’(x) = k ( ln a ) a kx x x ln a x ln a a ) Æ f’(x) = ( Indefinite Integrals of Exponential Functions | ∫ e xdx = e x + C kx | | | e ∫ e dx = k + C , k ≠ 0 x a x a ∫ d x = ln a + C kx ∫ kx a + C , k ≠0 a kx d x = k ( ln a ) Review of Derivative of Exponential Function | x x e e f(x) = Æ f’(x) = | f(x) = a = e | kx kx e f(x) = Æ f’(x) = ke | kx kx ln a a = e f(x) = Æ f’(x) = k ( ln a ) a kx x x ln a x ln a a ) Æ f’(x) = ( Indefinite Integrals of Exponential Functions | ∫ e xdx = e x + C kx | | | e ∫ e dx = k + C , k ≠ 0 x a x a ∫ d x = ln a + C kx ∫ kx a + C , k ≠0 a kx d x = k ( ln a ) EX7 Exponential Functions (a) t t t 9 e dt = 9 e dt = 9 e +C ∫ ∫ 9x e (b) ∫ e9 x dx = +C 9 (c) ∫ 3e 5u 4 du = 3 e 5 4 5 4 u 1 2 54 u e +C +C = 5 −5 x −5 x 2 2 −5 x 2 dx = +C =− +C (d) ∫ 5 ( ln 2 ) − 5 ( ln 2 ) Indefinite Integrals of Exponential Functions | ∫ e xdx = e x + C kx | | | e ∫ e dx = k + C , k ≠ 0 x a x a ∫ d x = ln a + C kx ∫ kx a + C , k ≠0 a kx d x = k ( ln a ) EX7 Exponential Functions (a) t t t 9 e dt = 9 e dt = 9 e +C ∫ ∫ 9x e (b) ∫ e9 x dx = +C 9 (c) ∫ 3e 5u 4 du = 3 e 5 4 5 4 u 1 2 54 u e +C +C = 5 −5 x −5 x 2 2 −5 x 2 dx = +C =− +C (d) ∫ 5 ( ln 2 ) − 5 ( ln 2 ) Indefinite Integral of | | | x −1 Derivative of Logarithmic Function f(x) = ln x where x ≠ 0 1 = x −1 Æ f’(x) = x −1 1 x dx = ∫ ∫ x dx = ln x + C ⎧ ln x , n = −1 ⎪ n +1 n ∫ x dx = ⎨ x , n ≠ −1 ⎪ ⎩n +1 EX8 Integrals (a) 4 1 ∫ x dx = 4 ∫ x dx = 4 ln x + C (b) ∫(− 5 x +e −2 x ) dx = −5ln x − 1 2 e −2 x +C EX9 Cost-1 Suppose a publishing company has found that the marginal cost at a level of production of x thousand books is given by 50 C '( x) = x and that the fixed cost (the cost before the firsr book can be produced) is $25,000. Find the cost function ∫(− 5 x +e −2 x ) dx = −5ln x − 1 2 e −2 x +C EX9 Cost-2 and use the indefinite integral rules to integrate the 50 − 12 function C '( x ) = = 50 x x − 12 +1 1 x 2 50 x dx = 50 + K = 100 x +K ∫ 1 − 2 +1 − 12 When x=0, C(0)=25,000, K=25,000 The cost function is C ( x) = 100 x + 25,000 Review of the Chain Rule d ⎡ f ( g ( x ) )⎤ = f ′ ( g ( x ) ) ⋅ g ′ ( x ) ⎦ dx ⎣ du 1. Let u = g(x), dx =g’(x) dw 2. Let w = f(g(x))=f(u), du =f’(u) 3. dw dx = dw du × du dx Æ f(g(x)) = f’(u) g’(x)=f’(g(x))g’(x) Substitution Rules | If u=g(x) is a differential function where du=g’(x)dx, then ∫ F '(g(x))g '(x)dx = F(g(x)) + C EX: ∫ 10 x ( x − 1) dx = ( x − 1 ) + C 2 4 2 5 1. u = x −1, du=2xdx 2 2 4 4 10 x ( x − 1) dx = 5 u 2. ∫ ∫ du = u 5 + C = ( x 2 + 1)5 + C General Power Rule for Integrals For u=f(x) and du=f’(x)dx, n +1 u n u ∫ dx = n + 1 + C 2 4 6 x (3 x + 4) dx EX1: Find ∫ let u =3 x 2 + 4, du =6x 2 4 2 4 6 x (3 x + 4) dx = (3 x + 4) (6 xdx) Æ ∫ ∫ 5 1 u = ∫ u 4 du = + C = (3 x 2 + 4)5 + C 5 5 EX2 General Power Rule 2 x Find ∫ Let u= ∫ x 3 + 1d x x + 1 , du = 3x 2dx 3 x + 1( x dx ) = ∫ u du = 3 2 1 2 u 1 2 1 +1 2 +1 +C 3 2 32 2 3 2 = u + C = ( x + 1) + C 3 3 EX3 General Power Rule Find ∫ (x x+3 2 + 6x) 2 dx Let u= x + 6 xdu , = ( 2 x + 6 ) dx 1 2( x + 3) 1 −2 x+3 ∫ x 2 + 6 x 2 dx = 2 ∫ ( x 2 + 6 x)2 dx = 2 ∫ u du ( ) 2 1 2 1 u −1 = +C = x + 6x 2 −1 2 ( ) −1 +C Indefinite Integrals of e u For u=f(x) and du=f’(x)dx, ∫ e dx = e u u +C Indefinite Integrals of For u=f(x) and du=f’(x)dx, du ∫ u dx = ∫ u = ln u + C −1 u −1 Example of Substitution EX4: Find ∫ x e dx 2 x3 2 3x let u =x , du = dx 3 1 x3 1 u 2 x e dx = ∫ e (3 x dx) = ∫ e du ∫ Æ 3 3 2 x3 1 u 1 x3 = e +C = e +C 3 3 Example of Substitution EX5: Find ∫ ( 2 x − 3 ) dx x2 − 3x let u = x 2 − 3 x , du = ( 2 x − 3) dx 1 ( 2 x − 3) dx Æ ∫ 2 x − 3x = ∫ u −1du = ln u + C = ln x 2 − 3 x + C EX6 Substitution Find ∫x 1 − xdx Let u = 1 − x , du = −dx , x=1-u ∫x ( ) 1 − xdx = ∫ (1 − u )u ( − du ) = − ∫ u − u du 1 2 =− u 1 2 1 +1 2 +1 + u 3 2 3 +1 2 1 2 3 2 2 32 2 52 +C = − u + u +C 3 5 +1 EX Integrals Find 4 30 3 ( x + 3 x ) (4 x + 3)dx ∫ Let g ( x ) = x + 3 x 4 3 ′ g ( x) = 4 x + 3 4 30 3 30 x x x dx g ( + 3 ) ( 4 + 3 ) = ∫ ∫ ( x) g ′( x)dx = [ g ( x )]31 31 +C = ( x 4 + 3 x )31 31 +C Example: Find 3 5 2 ( x + 6 x ) ( 6 x + 12)dx ∫ Let u = x + 6 x 3 du = (3 x + 6) dx 2 (6 x 2 + 12) dx = 2(3 x 2 + 6) dx = 2du 3 5 2 5 ( x + 6 x ) ( 6 x + 12 ) dx = u ∫ ∫ 2du ( )+ C =2 u6 6 =2 ( x3 +6 x )6 6 ( )+ C EX Integrals Find ∫ sin Let g(x)=sin x 10 x cos xdx g ′( x ) = cos x 10 10 sin x cos xdx = g ∫ ∫ ( x ) g ′( x )dx sin11 x g 11 ( x ) +C = +C = 11 11 2 10 ( x + 4 ) xdx ∫ Example: Find du = 2 xdx u = x +4 2 ∫ (x 2 + 4) xdx = ∫ ( x + 4) ⋅ ⋅ 2xdx 10 2 = 1 2 ∫u 10 1 2 du = 10 1 u11 2 11 +C Example: Find ∫ ( x + 4) xdx 2 du = 2 xdx u = x +4 2 ∫ (x 2 10 + 4) xdx = ∫ ( x + 4) ⋅ ⋅ 2xdx 10 2 = 1 2 = 10 1 2 u du = ∫ 10 ( x2 +4)11 22 +C 1 u11 2 11 +C Example: Find 2 2 ( + 3 ) x dx ∫ x2 2 It’s not suitable to apply the substitution rules 2 2 ( + 3 ) x dx = ( + 3 x + 9 ) x dx ∫ ∫ x2 2 2 2 x4 4 x6 = ∫ ( + 3 x 4 + 9 x 2 )dx 4 x7 3 5 = + x + 3x 3 + C 28 5 Substitution Method The choice of u is one of the following: 1. The quantity under a root or raised to a power 2. The exponent on e 3. The quantity in the denominator
© Copyright 2026 Paperzz