Introduction to Comp菓ex Numbers 〔 ACTIVITY8 C郡dano9s固ag油a野馳脚融幡隠 しess⑱踊8“包丁的e日的agina「y Unit, ; Lea「niれg Targets: ● Know the definition ofthe complex number f. Know that complex numbers can be written as cz + bi, Where a and1bare S, Write し魚cance. .atthe that 京Ve 竜合軒 亡ician G彬at、功 legative 鼻tion ⊃ し,宜rst r 1at 1Ct21:’ 十∴lO∴ 9ニ8l 0-高二 ∴:∴:∴:∴ real numbers. ● Graph complex numbers on the complex plane. SUGGESTED LEARNING STRATEGIES: Create Representations Interactive Word Wall, Marking the耽xt, Think-Pair-Share, Quickvr The equation x2 + 1 = O has special historical and mathematical signi At the beginning of the sixteenth century, mathematicians believed th Yo舟0やのr)eO側 空音/盤錐 ■ ■星 臆星 臆星 ■星 音量 1.署書詰霊諾蒜Of the early sixteenth century think 門扉-食言経験!打出稀 臆星 音星 l 臆星 音量 音量 漢星 ■星 ■星 ■星 i 臆星 A breakthrough occurred in 1545 when the talented Italian mathe m at l/1 ヽ_′i ¥ i ∩ Girolamo Cardano (150l-1576) published his book, AγS M讐na (了坊e Aγt). In the process ofsoIving one cubic (third-degree) equation, he 0 ● encountered-and was required to make use ofLthe square roots 臆星 臆星 園星 numbers. While skeptical of their existence, he demonstrated the With this famous problem: Find two numbers with the sum lO and PrOduct 40. 臆星 喜星 ■星 音量 ■星 音量 ■星 臆星 臆星 2. Make sense of p「oblems. Tb better understand this problem find two numbers with the sum 10 and the product 21. す千二訓 「十3=ゆ .p①このS聖S圭0〇三一<.p﹂g出eS〇一一〇∪‡e乙◎ 3. Letting x represent one number, Write an expression for the number in terms ofx. Use the expressions to write an equation models the problem in Item 2: f屯nd two numbers with the )き x(、0高二別 ( ∂ ノ l ■星 ■星 へ l d ■星 ■星 臆星 臆星 臆星 ■星 音量 ■星 i A⊂tivity8o introduction to Complex Numbers 121 しesson 8-1 COn、 S胎胆 unued ー細事商あ臆 ∴二二∴∴言 、,互∴ ノ.〆 露諾「こ こ汀 The Imaginary Unit, ; 帝調和 ̄軒甫噺 ̄皿’駁ト- ̄血糊良一 ̄ 、 ̄〆 ̄ ̄山一 ̄  ̄エー ̄…  ̄  ̄  ̄」〈 ̄、 ̄ユ ̄ ̄  ̄ ̄  ̄ 芋詳 4・Sol「 1 1 your equation in Item 3 in two different ways. Explain each 1 Ⅲ案こ漢音看" me 嘩瀧 (10-傘二21誉三コ あえ完全二言i x二つ a,y艦∴x さ 略( -ゆ来+之!二〇 YoucansoIveaquadratice 三言: ygPg,y g, 二三三二 20 b ra hin b factorin o く-羊蹄一勇二○ anuSe (,く n that represents the pro叫em that Cardano posed. ittosoivequadratjcequati - 0 theform 一一ノン ミ 講琶講琶園 1 町子’)’ r’「 当 藍竺戸和ox+46三〇 1 - - - - ox2+bx+C=0,Wherea≠ ∴一一〇"一 1 6.Ca重 rdano claimed that the solutions to the problem are x = 5 + √盲 :∴∴∴∴∴: ⑲H-S丁ORY eringhissoiut d x二5 - √盲. verifyhis solutions by using the Quadratic ions, For mula with the equation in Item 5. COnSid and he ● ● 〃 CardanodlSmISSed menta ctthat 0. l i ,まCardanc tortures’’andignoredthefa √・Jマ=XOnIywhenx≧ ) ) l l iii i上∴i 害臆漢「 O aVOided any more problems in Ars M讐m invoIving the square root MA丁 ○ ○ ささ 冒山 圏詰二言臆 Animagina細ynumberisa n um erO e Orm /W e rebisa& I reaInumberand/=√〒. ative 江fan呼 ∴ ny gtheprop number. However, he did demonstrate an understanding about erties ofsuch numbers. Solving the equation x2 + l = O yields the 全くSOlution, ∴ x = √† and x = 「√†. The number √〒 is represented bythe ∴ 剛,嗣鴫蜜Symbolj the imaginary unit. Ybu can say i = √i. The imaginary unit f is conside重 漢音菓 漢書 漢書 ■■ 臆漢 ■■ ■■ 漢書 漢書 漢音 漢書 漢書 漢書 漢書 漢書 丁bsimp】 the solution to the equation j2 + 1 = 0, Or i2 = -1. an jm呼m′γ ”αmbeγ √言, Where s is a positive numbenyou CanWrit( ⑪l 0ニl めニー10 C二日O O汁Xユニ十〇 〇二X∂」OX十十〇 xニ¥0±寸唖 四隅 弘ニ.堅守高二高 _鯵- ・…・職-一一一一・一一一 弘三嶋土壁 墨譜 122 springBoard㊥ MathematicsAlgeb「a2, Unit2. Quadratic Functions .pO≧㍊らしS≡∽三-<.p﹂昌∞eOO三〇Uいさ乙◎ ■■ 漢音 漢音 :∴ ExampleA ∴∴ ∴∴ lill Wrltethenumbers -17。nd√づmtemSOf,. ! √市 √づ 互u【葛8菓 ii 1NGMAT欄 討議 草 ∴●、 WriteiJi7insteadofJi7/,Which maybeconfusedwithJ千〇77. Stepl:Definitionof√言 =i・Ji7=i.J; Step2:嶋kethesquarerootof9. =iJi7=i.3 二=3i Solution:√i7=i読了and√三二3i Hl llIl ii i Iii TryThe§eÅ ∵∴●∵∴」 i i ● HISTORY 紫雲請書」 葛i萱罰肌す町案I晴間画題を、 ReneDescartes(1596-1650)was thefirsttoca旧hesenumbers imagin。ry.Althoughhisreference WaSmeanttObederogatory,the term/m。gin。rynumberpersists. LeonhardEuier(1707-1783) introducedtheuseof/forthe lmaglnaryunit. ! 7.Makeuseofstructure.Rewritetheimaginarynumber4iasthe i i ; ∴ ∴ ; 泣 言 か ; ∴ 漢書 SquarerOOtOfanegativenumber・Explainhowyoudetermined l l・ ささ葛 yOuranSWer. 8’SlmPllfyeachoftheseexpressIOnS・餉and忠†態) expressionsequivalent?Explain.-鴫 9.Writeeachnumberintermsofi. 。 。.√売「千十を b._√方-3甫lo「 C・府商科蒋 d・2与-4(2)(6)南も .p呈e∽2S︺もてごく.p﹂き出るOOe二〇︺‡eN◎ 10・Wlrydoyouthinkimaginarynumbersareusefulformathematicians? ∴判卜姉∴里うら∴Sき∴l∴し巾畔∴∩γ令「上中トで鳥申∴∴∴∴∴ 11.WritethesolutionstoCardano串roblem,X=5+√市and x=5葛√亘usingtheimaginaryunitJ. 芽ニ与十寸前 高二も-重言!’ 臆 i I I i i A⊂tivity8. introduction to ComplexNumbers 123 l i ) しessoれ8-1 AC丁日VさTY 8 The Imaginary Unit, ; .粧阜 ∴∴二十∴ The set ofcomplex numbers consists ofthe real numbers and the imaginary 漢書 l 」書l看 漢王菓 漢音、 numbers. A conpl餅m/mbeγ has two parts: the real part a and the ● 丁 子,∴ ∴ lmagmary Part bi. For example, in 2 + 3i, the real part is 2 and the imaginary Partis3i・ AくOmplexnumberisanumberin! theform。+bi,Whereaandbare reainumbersand/=√i. l ) 12. Identify the real part and the imaginary part ofeach complex number. ヽ 1 l ¥ A ノーヽ ) ー / a.与+8i ミ ! l 勧 I b.8 ・・而 d・誓 ∴ 13. Using the definition ofcomplex numbers, Show that the set ofreal し Y l J 鍬 1 numbers is a subset of the complex numbers. ’ヽ 14・ Using the definition ofcomplex numbers, Show that the set of nl † l 命 ∴l の 音→ lmagmary numbers is a subset of the complex numbers. ¥] 雷 l ( D ⊥ ) ヽ/ Complex numbers in the form cz + bi can be represented geometrically as 事 POints in the co印lexplane・ The complex plane is a rectangular grid, Similar ′“ヽ u i I to the Cartesian plane’With the horizontal axis representing the real part a of l a complex number and the vertical axis representing the imaginary part bi of l a complex number. The point (a, b) on the complex plane represents the COmPlex number a + bi・ 了 l Example露 臆臆 、「〇〇、〇 4 A ′ 言上く Point B represents -3 + 2i・ 1 B Point C represents l - 4i・ くヽ ヤ Point D represents 3 + Oi・ l l ーl -5臆 D 丁 C 丁「y The§e B a. Graph 2 + 3i and -3 - 4i onthe complexplane above. Graph each complex number on a complex plane grid・ b. 2+5i c. 4-3i d. -1+3i e. -2i f. -5 i i ■ 124 SpringBoard⑪ Mathematics Algebra2, Unit2. Quadratic Functions 5 .pe≧OS①﹂S三∽七二<.p﹂召出e∽e三〇︺い一〇N◎ Point A represents O + 4i・ 」ess⑬n 8-且 The lmaginary Unit, ; 、’二で† ∴:;∴: 嗣 欄 ) ね い Plane represent? Explain. l 汽 力 一一1 V l謝 X I さ 子  ̄「 し ∩ ヽ! ねl 博∴ 釘恥 牟 n Y What Set Ofnumbers do the points on the real axis ofth Sl (裏. 〆) Reason abstractly. Compare and contrast the CartesSianplanewith LeCOmPlex POintonthe 亘 the complex plane. † 室 r 弧 ↓ 、u .塙 I n と 醐 5 沃 0 ヽ l 0 Name the complex number represented by each labeled COmPlex plane below ● l 叩 く、自 )1 十 e r)は 碕 ノ 請 6 A 申 告 仁 子 の C Pl γ m戟 B 2 † l a 当 a I  ̄l 丁U しノ 1 ∴! 掲 篤 n 節義 七㌢ lS 〃 n い Y ′ l m 1 ∴ 巳 叩 .鴎 め’ ) う r漢 ̄ ● † l 音 ● -6 、( J ● D ‡ .) b ● 漢書 _6 臆臆 圏 取,) 早 t ′ヽ ヽノ 出国SS⑬N 8-1 PRAC丁竃CE 18. Write each expression in terms of Z. b. √盲 。.,+√盲3十五品, d.与_√毒 も 帝 l S h 廿 h n ′ n m n 小 )● -らI Plexnumber ) Plain・ mberonthe 。.√奇「† 一. の 〔 d の 1 羊 后 l 十 S 鈎 γ鍔 しl 0 鍔 :ノ i ¥ 帥 q ● P (! 火 i置 .pe≧OS里S︺盲三一<.p﹂芸出e∽茎OU‡O乙◎ 19. Identify the real part an車he imaginary part ofthe 1 ! nし 十 l 十∴ 頼 玖 I n 1 ′臆、音 主 16-高 音砲口 乾 旧観9他年I 1Tistheratioofacir⊂Ie’s 20. Reason quantitatively. Is n a complex number? Exp cir⊂umferencetoitsdiameter.爪is = 21. Draw the complex plane. Then graph each complex Plane. a.6i b. d.4-i e. anirrationa numberandits ? C.-2-与i 軸 Vriteanequation ritethesolutions 十8〇三⑦ 8cニ80 ∴二三二三 塁喜 Aくtivity8.l decima 3十4i formneitherterminates % norrepeats. 芸 -3十2i 誓ノごく’本草「 II 22. The sum oftwo numbers is 8, and their product is 80. 鑑三蓋慧 壁間国璽誕 Use the expressions to / )!L 、調 that models the situation given above. 臆面 1= b. Use the Quadratic Formula to soIve the equation. 日書き X( 合ノ一 in terms ofj. l !●二l x王手8x 仁王 : ̄’ -ゝ 8穴 易態 竃’ご¥= ̄ 音 義 し富  ̄ l 良 nt「 ) 心事 音雪 8○○ l uctiontoComplexNumbers125 l
© Copyright 2026 Paperzz