Introduction to Complex Numbers f . silcr|V|717£i

Introduction to Comp菓ex Numbers
〔 ACTIVITY8
C郡dano9s固ag油a野馳脚融幡隠
しess⑱踊8“包丁的e日的agina「y Unit, ;
Lea「niれg Targets:
● Know the definition ofthe complex number f.
Know that complex numbers can be written as cz + bi, Where a and1bare S, Write し魚cance. .atthe that 京Ve 竜合軒 亡ician G彬at、功 legative 鼻tion ⊃ し,宜rst r 1at 1Ct21:’ 十∴lO∴ 9ニ8l 0-高二 ∴:∴:∴:∴
real numbers.
● Graph complex numbers on the complex plane.
SUGGESTED LEARNING STRATEGIES: Create Representations
Interactive Word Wall, Marking the耽xt, Think-Pair-Share, Quickvr
The equation x2 + 1 = O has special historical and mathematical signi
At the beginning of the sixteenth century, mathematicians believed th
Yo舟0やのr)eO側
空音/盤錐
■
■星
臆星
臆星
■星
音量
1.署書詰霊諾蒜Of the early sixteenth century think
門扉-食言経験!打出稀
臆星
音星
l
臆星
音量
音量
漢星
■星
■星
■星
i
臆星
A breakthrough occurred in 1545 when the talented Italian mathe m at
l/1
ヽ_′i
¥
i
∩
Girolamo Cardano (150l-1576) published his book, AγS M讐na (了坊e
Aγt). In the process ofsoIving one cubic (third-degree) equation, he
0
●
encountered-and was required to make use ofLthe square roots
臆星
臆星
園星
numbers. While skeptical of their existence, he demonstrated the
With this famous problem: Find two numbers with the sum lO and
PrOduct 40.
臆星
喜星
■星
音量
■星
音量
■星
臆星
臆星
2. Make sense of p「oblems. Tb better understand this problem
find two numbers with the sum 10 and the product 21.
す千二訓 「十3=ゆ
.p①このS聖S圭0〇三一<.p﹂g出eS〇一一〇∪‡e乙◎
3. Letting x represent one number, Write an expression for the
number in terms ofx. Use the expressions to write an equation
models the problem in Item 2: f屯nd two numbers with the
)き
x(、0高二別
(
∂
ノ
l
■星
■星
へ l
d
■星
■星
臆星
臆星
臆星
■星
音量
■星
i
A⊂tivity8o introduction to Complex Numbers 121
しesson 8-1
COn、
S胎胆
unued
ー細事商あ臆
∴二二∴∴言 、,互∴
ノ.〆
露諾「こ
こ汀
The Imaginary Unit, ;
帝調和 ̄軒甫噺 ̄皿’駁ト- ̄血糊良一 ̄ 、 ̄〆 ̄ ̄山一 ̄  ̄エー ̄…  ̄  ̄  ̄」〈 ̄、 ̄ユ ̄ ̄  ̄ ̄  ̄
芋詳 4・Sol「
1 1
your equation in Item 3 in two different ways. Explain each
1
Ⅲ案こ漢音看"
me
嘩瀧
(10-傘二21誉三コ
あえ完全二言i x二つ
a,y艦∴x さ 略(
-ゆ来+之!二〇
YoucansoIveaquadratice
三言:
ygPg,y g, 二三三二 20
b ra hin b factorin o
く-羊蹄一勇二○
anuSe (,く
n
that represents the pro叫em that Cardano posed.
ittosoivequadratjcequati
-
0
theform
一一ノン ミ 講琶講琶園
1 町子’)’
r’「 当
藍竺戸和ox+46三〇
1 - - - -
ox2+bx+C=0,Wherea≠ ∴一一〇"一
1 6.Ca重
rdano claimed that the solutions to the problem are x = 5 + √盲
:∴∴∴∴∴:
⑲H-S丁ORY eringhissoiut
d x二5 - √盲. verifyhis solutions by using the Quadratic
ions, For mula
with the equation in Item 5.
COnSid
and
he
● ● 〃
CardanodlSmISSed menta
ctthat 0. l i ,まCardanc
tortures’’andignoredthefa
√・Jマ=XOnIywhenx≧
)
)
l
l
iii
i上∴i
害臆漢「
O aVOided any more problems in Ars M讐m invoIving the square root
MA丁
○ ○
ささ
冒山
圏詰二言臆
Animagina細ynumberisa
n
um erO e Orm /W e
rebisa&
I reaInumberand/=√〒.
ative
江fan呼
∴ ny gtheprop
number. However, he did demonstrate an understanding about
erties ofsuch numbers. Solving the equation x2 + l = O yields the
全くSOlution, ∴
x = √† and x = 「√†. The number √〒 is represented bythe
∴ 剛,嗣鴫蜜Symbolj
the imaginary unit. Ybu can say i = √i. The imaginary unit f is
conside重
漢音菓
漢書
漢書
■■
臆漢
■■
■■
漢書
漢書
漢音
漢書
漢書
漢書
漢書
漢書
丁bsimp】
the solution to the equation j2 + 1 = 0, Or i2 = -1.
an jm呼m′γ ”αmbeγ √言, Where s is a positive numbenyou
CanWrit(
⑪l
0ニl
めニー10 C二日O
O汁Xユニ十〇
〇二X∂」OX十十〇
xニ¥0±寸唖
四隅
弘ニ.堅守高二高
_鯵- ・…・職-一一一一・一一一
弘三嶋土壁
墨譜
122 springBoard㊥ MathematicsAlgeb「a2, Unit2. Quadratic Functions
.pO≧㍊らしS≡∽三-<.p﹂昌∞eOO三〇Uいさ乙◎
■■
漢音
漢音
:∴
ExampleA
∴∴
∴∴
lill
Wrltethenumbers -17。nd√づmtemSOf,.
! √市 √づ
互u【葛8菓
ii
1NGMAT欄
討議
草
∴●、 WriteiJi7insteadofJi7/,Which maybeconfusedwithJ千〇77.
Stepl:Definitionof√言 =i・Ji7=i.J;
Step2:嶋kethesquarerootof9. =iJi7=i.3 二=3i
Solution:√i7=i読了and√三二3i Hl
llIl
ii
i Iii
TryThe§eÅ
∵∴●∵∴」
i i
● HISTORY
紫雲請書」 葛i萱罰肌す町案I晴間画題を、 ReneDescartes(1596-1650)was thefirsttoca旧hesenumbers imagin。ry.Althoughhisreference WaSmeanttObederogatory,the term/m。gin。rynumberpersists. LeonhardEuier(1707-1783) introducedtheuseof/forthe lmaglnaryunit.
!
7.Makeuseofstructure.Rewritetheimaginarynumber4iasthe
i
i
; ∴ ∴ ; 泣 言 か ; ∴
漢書
SquarerOOtOfanegativenumber・Explainhowyoudetermined
l l・ ささ葛
yOuranSWer.
8’SlmPllfyeachoftheseexpressIOnS・餉and忠†態) expressionsequivalent?Explain.-鴫
9.Writeeachnumberintermsofi. 。
。.√売「千十を b._√方-3甫lo「
C・府商科蒋 d・2与-4(2)(6)南も
.p呈e∽2S︺もてごく.p﹂き出るOOe二〇︺‡eN◎
10・Wlrydoyouthinkimaginarynumbersareusefulformathematicians?
∴判卜姉∴里うら∴Sき∴l∴し巾畔∴∩γ令「上中トで鳥申∴∴∴∴∴
11.WritethesolutionstoCardano串roblem,X=5+√市and
x=5葛√亘usingtheimaginaryunitJ.
芽ニ与十寸前
高二も-重言!’
臆
i
I
I
i
i
A⊂tivity8. introduction to ComplexNumbers 123
l
i
)
しessoれ8-1
AC丁日VさTY 8
The Imaginary Unit, ;
.粧阜
∴∴二十∴
The set ofcomplex numbers consists ofthe real numbers and the imaginary
漢書
l
」書l看
漢王菓
漢音、
numbers. A conpl餅m/mbeγ has two parts: the real part a and the
● 丁 子,∴ ∴
lmagmary Part bi. For example, in 2 + 3i, the real part is 2 and the imaginary
Partis3i・
AくOmplexnumberisanumberin!
theform。+bi,Whereaandbare
reainumbersand/=√i.
l )
12. Identify the real part and the imaginary part ofeach complex number.
ヽ
1
l
¥
A
ノーヽ
)
ー
/
a.与+8i
ミ
!
l
勧
I
b.8
・・而 d・誓
∴
13. Using the definition ofcomplex numbers, Show that the set ofreal
し
Y
l
J
鍬
1
numbers is a subset of the complex numbers.
’ヽ
14・ Using the definition ofcomplex numbers, Show that the set of
nl
†
l
命
∴l
の
音→
lmagmary numbers is a subset of the complex numbers.
¥]
雷
l
(
D
⊥
)
ヽ/
Complex numbers in the form cz + bi can be represented geometrically as
事
POints in the co印lexplane・ The complex plane is a rectangular grid, Similar
′“ヽ
u
i
I
to the Cartesian plane’With the horizontal axis representing the real part a of
l
a complex number and the vertical axis representing the imaginary part bi of
l
a complex number. The point (a, b) on the complex plane represents the
COmPlex number a + bi・
了
l
Example露
臆臆
、「〇〇、〇
4
A
′
言上く
Point B represents -3 + 2i・
1
B
Point C represents l - 4i・
くヽ
ヤ
Point D represents 3 + Oi・
l
l
ーl
-5臆
D
丁
C
丁「y The§e B
a. Graph 2 + 3i and -3 - 4i onthe complexplane above.
Graph each complex number on a complex plane grid・
b. 2+5i c. 4-3i d. -1+3i e. -2i f. -5
i
i
■
124 SpringBoard⑪ Mathematics Algebra2, Unit2. Quadratic Functions
5
.pe≧OS①﹂S三∽七二<.p﹂召出e∽e三〇︺い一〇N◎
Point A represents O + 4i・
」ess⑬n 8-且
The lmaginary Unit, ;
、’二で†
∴:;∴:
嗣
欄
)
ね
い
Plane represent? Explain.
l
汽
力
一一1
V
l謝
X
I
さ
子
 ̄「 し
∩
ヽ!
ねl
博∴
釘恥
牟
n
Y
What Set Ofnumbers do the points on the real axis ofth
Sl
(裏.
〆)
Reason abstractly. Compare and contrast the CartesSianplanewith LeCOmPlex POintonthe 亘
the complex plane.
†
室
r
弧
↓
、u
.塙
I
n
と
醐
5
沃
0
ヽ
l
0
Name the complex number represented by each labeled
COmPlex plane below
●
l
叩 く、自
)1
十
e
r)は
碕
ノ
請
6
A
申 告 仁 子
の
C
Pl γ
m戟
B
2
†
l
a
当
a I
 ̄l
丁U
しノ
1
∴!
掲
篤
n
節義 七㌢
lS
〃
n
い
Y
′
l
m 1
∴
巳
叩
.鴎
め’
)
う
r漢 ̄
●
†
l
音
●
-6
、(
J
●
D
‡
.)
b
●
漢書
_6
臆臆
圏
取,)
早
t
′ヽ
ヽノ
出国SS⑬N 8-1 PRAC丁竃CE
18. Write each expression in terms of Z.
b. √盲
。.,+√盲3十五品,
d.与_√毒 も
帝
l
S
h
廿
h
n
′
n
m
n
小
)● -らI Plexnumber ) Plain・ mberonthe
。.√奇「†
一.
の
〔
d
の
1
羊
后
l
十
S
鈎
γ鍔
しl
0
鍔
:ノ
i ¥
帥
q
●
P
(!
火
i置
.pe≧OS里S︺盲三一<.p﹂芸出e∽茎OU‡O乙◎
19. Identify the real part an車he imaginary part ofthe
1
!
nし
十
l
十∴
頼
玖
I
n
1
′臆、音 主
16-高 音砲口 乾 旧観9他年I
1Tistheratioofacir⊂Ie’s
20. Reason quantitatively. Is n a complex number? Exp
cir⊂umferencetoitsdiameter.爪is =
21. Draw the complex plane. Then graph each complex
Plane.
a.6i
b.
d.4-i
e.
anirrationa
numberandits ?
C.-2-与i 軸 Vriteanequation ritethesolutions 十8〇三⑦ 8cニ80 ∴二三二三 塁喜 Aくtivity8.l decima
3十4i
formneitherterminates %
norrepeats. 芸
-3十2i
誓ノごく’本草「
II
22. The sum oftwo numbers is 8, and their product is 80.
鑑三蓋慧
壁間国璽誕
Use the expressions to
/ )!L
、調
that models the situation given above.
臆面 1=
b. Use the Quadratic Formula to soIve the equation.
日書き
X(
合ノ一
in terms ofj.
l !●二l
x王手8x
仁王
: ̄’
-ゝ
8穴
易態
竃’ご¥= ̄
音
義
し富
 ̄ l
良 nt「
)
心事
音雪
8○○
l uctiontoComplexNumbers125
l