Intensive Tutorial Service Mathematics Worksheet

Intensive Tutorial Service
Topic: Addition and subtraction of algebraic expressions
Mathematics Worksheet
Class: …….
Date: …………………
1. Simplify:
a) (6x + 2) + (3x + 4)
b) (5a – 3) + (2a + 7 )
c) (8 – 4m) + (-3 – 2m)
d) (-x + 4) + (7x – 2)
e) (4n2 – 3n – 1) + (2n2 – 5n -3)
f) (3x2 + 6x – 8) + (-5x2 – x + 4)
g) (2 – 3c + c2) + (5 – 4c – 4c2)
h) (8 – 2n – n2) + (-3 – n + 4n2)
i) (ab + 3b – 5) + (2ab – 4b – 6)
j) (mn – 5m – 2) + (-6n + 3m + 7)
2. Simplify
a) (-2x + 3) – (3x + 2)
b) (4 – 5n) – (-6n + 2)
c) (8a2 + 2a – 3) – (-6a2 + 4a + 7)
d) (-6x2 + 5x + 1) – (4x2 + 5 – 2x)
e) (3 – 2m – n2) – (7 – 6m + n2)
f) (2 + 6x2) – (7 – 3x2)
g) (5 – 6t2) – (3 – t2)
h) (5x2 – 3x) – (-3x + 5x2)
3. Simplify.
a) (3x – 2) – (x – 1)
b) (2a + 3) + (6a – 1)
c) (5x2 – 3x) – (x2 + 2x)
d) (5t – 4) + (3t – 1)
e) (3 – 4x + x2) – (2x – x2)
f) (3n2 – 6n + 5) – (3n2 – 2n – 1)
g) (3x2 – 2x + 4) + (x2 + 3)
h) (3x2 – 2x + 4) – (x2 + 3)
i) (5m – 2m2) + (m2 – 6)
j) (5m – 2m2) – (m2 – 6)
4. Simplify.
a) (3x2 – 7x + 4) + (5x – 7x2 + 6)
Maths Worksheet
Page 1 of 4
b) (6 – 3x + x2) + (9 – x)
Prepared by YPO
Intensive Tutorial Service
Topic: Addition and subtraction of algebraic expressions
Mathematics Worksheet
Class: …….
Date: …………………
c) (1 – 7x2 + 2x) + (x3 – 3x2 + 7)
d) (5x – x2) + (3x + x2 – 7)
e) (5x2 + 7x + 9) – (3x2 + 4x + 2)
f) (11m2 – 5m + 8) – (7m2 + m – 3)
g) (4a2 – 3a3 – 7) – (a2 – 2a3 – 13)
h) (-6x2 + 17x – 4) – (3x2 + 12x + 8)
5. Add or Subtract as the question suggests.
a) (3x2 – 2x + 4) and (x2 + 3)
b) (3x2 – 2x + 4) from (x2 + 3)
c) (5m – 2m2) to (m2 – 6)
d) (5m – 2m2) – (m2 – 6)
e) (3x2 – 7x + 4) and (5x – 7x2 + 6)
f) (6 – 3x + x2) from (9 – x)
g) From (1 – 7x2 + 2x) subtract (x3 – 3x2 + 7)
h) (5x – x2) and (3x + x2 – 7)
j) (5a – 3) + (2a + 7 )
i) (6x + 2) + (3x + 4)
k) (8 – 4m) + (-3 – 2m) d) (-x + 4) + (7x – 2)
l) (4n2 – 3n – 1) + (2n2 – 5n -3)
m) (3x2 + 6x – 8) + (-5x2 – x + 4)
n) (2 – 3c + c2) + (5 – 4c – 4c2)
o) (8 – 2n – n2) + (-3 – n + 4n2)
p) (ab + 3b – 5) + (2ab – 4b – 6)
q) (mn – 5m – 2) + (-6n + 3m + 7)
6. Simplify
a) (-2x + 3) – (3x + 2)
b) (4 – 5n) – (-6n + 2)
c) (8a2 + 2a – 3) – (-6a2 + 4a + 7)
d) (-6x2 + 5x + 1) – (4x2 + 5 – 2x)
e) (3 – 2m – n2) – (7 – 6m + n2)
f) (2 + 6x2) – (7 – 3x2)
g) (5 – 6t2) – (3 – t2)
h) (5x2 – 3x) – (-3x + 5x2)
i) (3x – 2) – (x – 1)
j) (2a + 3) + (6a – 1)
k) (5x2 – 3x) – (x2 + 2x)
Maths Worksheet
Page 2 of 4
Prepared by YPO
Intensive Tutorial Service
Topic: Addition and subtraction of algebraic expressions
Mathematics Worksheet
Class: …….
Date: …………………
7. Find the value of the polynomial when : i) x = 1, and m = -2.
a) (1 – 2x2 – x) + (2x – 3x2 – 7)
b) (3 – 2x2 – x) – (2x – 3x2 – 7)
c) (5x2 + 7x + 9) – (3x2 + 4x + 2)
d) (11m2 – 5m + 8) – (7m2 + m – 3)
e) (5 – 2m – m2) – (7m + 4 – 5m2)
f) (x2 – 4x + x3) – (3x + 5 – x3)
8. Simplify. Find the value of the polynomial when : i) x = 1, ii) x = -2.
a) (1 – 2x2 – x) + (2x – 3x2 – 7)
b) (3 – 2x2 – x) – (2x – 3x2 – 7)
9. a) Simplify.
i) (5 – 2m – m2) – (7m + 4 – 5m2)
ii) (x2 – 4x + x3) – (3x + 5 – x3)
b) Find the value of each polynomial in part a when m = -2.
10. a) Simplify.
i)
(y2 – 2y) – (5 – 2y)
ii) (8y – 5) – (y – 4) + (3y + 1)
b) Find the value of each polynomial in part a when y = 4.
11. a) What polynomial sum do the tiles represent?
b) Explain how to use the algebra tiles to simplify the sum of the polynomials in
part a.
Maths Worksheet
Page 3 of 4
Prepared by YPO
Intensive Tutorial Service
Topic: Addition and subtraction of algebraic expressions
Mathematics Worksheet
Class: …….
Date: …………………
12. Explain why the two polynomials are not opposites.
a) 5x2 – 3x – 2 and 5x2 + 3x + 2
c) -4y + y2 + 11 and 4y – y2 + 11
Maths Worksheet
Page 4 of 4
b) x2 + 7x – 9 and –x3 – 7x + 9
d) x3 – 4x2 + 9 and –x3 + 4x2 – x
Prepared by YPO