Mathematicaworkshop, October 2, 2014 Davis Auditorium by Gautam Dasgupta, Civil Engg. & Engg. Mechanics Abstract An hour of introductory description of the computing environment Mathematica is intended to assist preparing self-study of this scientific computing software that is campuswide available. The solid algorithmic foundation of the Mathematica language makes is easy to learn using on-line help alongside demonstration notes and books, which are available in the internet, after the basic structural concepts are grasped. Thus the focus will be on illustrating how the numerical, symbolic and graphical calculations are uniformly programmed throughout Mathematica in tandem. Programming discipline and good programming habit will be initiated with examples. In addition to demonstrating simple calculations, brief description of concept development in speaker’s research will also be included. Self-learning by using the software in homework, lab-work and in research is the best way to harness the power of Mathematica. After the formal presentation the speaker will be available for individual discussions. Mathematica workshop October 2, 2014 Presenter: Gautam Dasgupta [email protected] Topics 0 to 5 minutes: Resources 5 to 10 minutes: Computer Mathematics 10 to 15 minutes : Replacement rules 15 to 20 minutes : Basic structures 20 to 30 minutes : Linear Algebra 30 to 35 minutes : Modifying system rules 35 to 45 minutes : Research Application 45 to 55 minutes : Q & A Mathemaics vs. Computer Mathematics Replacement rules Basic structures Linear Algebra Modifying system rules Research Application Mathemaics vs. Computer Mathematics Traditional Mathematics y = y (x); y(a) Computer Mathematics yValue = yFunction[x] In[1]:= FullForm@a * bD Out[1]//FullForm= In[2]:= Out[2]= In[3]:= Out[3]= Times@a, bD a 8b, c, d< 8a b, a c, a d< a + 8b, c, d< 8a + b, a + c, a + d< User defined functions can have any system function property. In[4]:= SetAttributes@f, ListableD In[5]:= f@a , 8b, c, d<D Out[5]= 8f@a, bD, f@a, cD, f@a, dD< Integral examples: In[6]:= Out[6]= In[7]:= Out[7]= In[8]:= Out[8]= Integrate@ArcTan@xD, xD x ArcTan@xD - 1 2 LogA1 + x2 E Integrate@Exp@- xD ArcTan@xD, xD - ‰-x ArcTan@xD + 1 2  ‰Â ExpIntegralEi@-  - xD - Integrate@Sqrt@ArcTan@xDD, xD ‡ ArcTan@xD „ x 1 2  ‰- ExpIntegralEi@ - xD Replacement rules In[9]:= solution1 = Solve@x ^ 2 ã a, xD Out[9]= 99x Ø - In[10]:= solution2 = Solve@8x ^ 2 ã a, x * y ã b<, 8x, y<D Out[10]= ::x Ø - a =, 9x Ø a,yØ- a == b a In[11]:= Out[11]= In[12]:= Out[12]= In[13]:= Out[13]= z = x * y^2 x y2 z ê. solution1 9- a y2 , z ê. solution2 :- b2 , a In[14]:= Out[14]= a y2 = b2 > a Sin@qD ê. Sin Ø Cos Cos@qD >, :x Ø a,yØ b a >> Linear Algebra inner product In[15]:= Out[15]= In[16]:= a = 88p1, q1, r1<, 8p2, q2, r2<< 88p1, q1, r1<, 8p2, q2, r2<< MatrixForm@aD Out[16]//MatrixForm= K In[17]:= Out[17]= In[18]:= p1 q1 r1 O p2 q2 r2 b = 88x<, 8y<, 8z<< 98x<, 8y<, 9x y2 == MatrixForm@bD Out[18]//MatrixForm= x y x y2 In[19]:= Out[19]= In[20]:= a.b 99p1 x + q1 y + r1 x y2 =, 9p2 x + q2 y + r2 x y2 == MatrixForm@a . bD Out[20]//MatrixForm= p1 x + q1 y + r1 x y2 p2 x + q2 y + r2 x y2 Outer product In[21]:= a = 8p, q, r< Out[21]= 8p, q, r< In[22]:= b = 8x, y< Out[22]= In[23]:= Out[23]= 8x, y< Outer@f, a, bD 88f@p, xD, f@p, yD<, 8f@q, xD, f@q, yD<, 8f@r, xD, f@r, yD<< 2 Untitled-7 In[24]:= MatrixForm@%D Out[24]//MatrixForm= f@p, xD f@p, yD f@q, xD f@q, yD f@r, xD f@r, yD Jacobian In[25]:= Out[25]= In[26]:= Out[26]= In[27]:= a = 8p@x, yD, q@x, yD< 8p@x, yD, q@x, yD< Outer@D, a, bD 99pH1,0L @x, yD, pH0,1L @x, yD=, 9qH1,0L @x, yD, qH0,1L @x, yD== TableForm@%D Out[27]//TableForm= pH1,0L @x, yD pH0,1L @x, yD qH1,0L @x, yD qH0,1L @x, yD Pseudoinverse In[28]:= ? PseudoInverse PseudoInverse@mD finds the pseudoinverse of a rectangular matrix. à In[29]:= Out[29]= In[30]:= Out[30]= In[31]:= Out[31]= m = 881, 2, 3<, 84, 5, 6<, 87, 8, 9<< 881, 2, 3<, 84, 5, 6<, 87, 8, 9<< Det@mD 0 PseudoInverse@mD ::- 23 36 ,- 1 6 , 11 36 >, :- 1 18 , 0, 1 18 >, : 19 36 , 1 6 ,- 7 36 >> Modifying system rules In[33]:= Out[33]= In[34]:= Out[34]= Inverse@mD Inverse@881, 2, 3<, 84, 5, 6<, 87, 8, 9<<D Unprotect@InverseD 8Inverse< In[35]:= Inverse@m_ ê; Det@mD ã 0D := PseudoInverse@mD In[36]:= Inverse@mD Out[36]= ::- 23 36 ,- 1 6 , 11 36 >, :- 1 18 , 0, 1 18 >, : 19 36 , 1 6 ,- 7 36 >> Research Application 2 Untitled-9
© Copyright 2026 Paperzz