Geometry of Hilbert polynomials and Gröbner bases

Geometry of
Hilbert
polynomials
and Gröbner
bases
Geometry of Hilbert polynomials and
Gröbner bases
John Perry
Gröbner bases
and monomial
orderings
Gröbner bases
Geometry of orderings
John Perry
Department of Mathematics, The University of Southern Mississippi
Hilbert
polynomials
Caboara,
Sturmfels’
algorithms
Future
February 2010
Algebra is merely geometry in words;
geometry is merely algebra in pictures.
— Sophie Germain
Outline
Geometry of
Hilbert
polynomials
and Gröbner
bases
John Perry
1 Gröbner bases and monomial orderings
Gröbner bases
and monomial
orderings
Gröbner bases
Geometry of orderings
2 Hilbert polynomials
3 Caboara, Sturmfels’ algorithms
4 Future
Hilbert
polynomials
Caboara,
Sturmfels’
algorithms
Future
Outline
Geometry of
Hilbert
polynomials
and Gröbner
bases
John Perry
1 Gröbner bases and monomial orderings
Gröbner bases
and monomial
orderings
Gröbner bases
Geometry of orderings
2 Hilbert polynomials
3 Caboara, Sturmfels’ algorithms
4 Future
Hilbert
polynomials
Caboara,
Sturmfels’
algorithms
Future
Gröbner basis: definition from example
Geometry of
Hilbert
polynomials
and Gröbner
bases
John Perry
Gröbner bases
and monomial
orderings
4
3
Gröbner bases
Geometry of orderings
2
Hilbert
polynomials
1
Caboara,
Sturmfels’
algorithms
-0
-1
Future
-2
-3
-4
-4
-3
-2
-1
-0
1
2
3
what can I say about • ?
4
Monomial orderings
Geometry of
Hilbert
polynomials
and Gröbner
bases
John Perry
x + xy
2
.
x2 + xy
(lex)
2
Gröbner bases
and monomial
orderings
&
x2 + xy2
(tdeg)
Gröbner bases
Geometry of orderings
Hilbert
polynomials
Caboara,
Sturmfels’
algorithms
Future
Remark
• notation: lm (p)
• uncountably many orderings
• given an ideal, finitely many equivalence classes
Monomial orderings
Geometry of
Hilbert
polynomials
and Gröbner
bases
John Perry
x + xy
2
.
x2 + xy
(lex)
2
Gröbner bases
and monomial
orderings
&
x2 + xy2
(tdeg)
Gröbner bases
Geometry of orderings
Hilbert
polynomials
Caboara,
Sturmfels’
algorithms
Future
Remark
• notation: lm (p)
• uncountably many orderings
• given an ideal, finitely many equivalence classes
Gröbner basis: precise definition
G a Gröbner basis of ideal I?
Geometry of
Hilbert
polynomials
and Gröbner
bases
John Perry
4
Gröbner bases
and monomial
orderings
Gröbner bases
3
Geometry of orderings
Hilbert
polynomials
Caboara,
Sturmfels’
algorithms
1
2
hlm(I)i
• I = 〈G〉. . .
•
4
3
2
1
Future
Gröbner basis: precise definition
G a Gröbner basis of ideal I?
Geometry of
Hilbert
polynomials
and Gröbner
bases
John Perry
4
Gröbner bases
and monomial
orderings
Gröbner bases
3
Geometry of orderings
Hilbert
polynomials
Caboara,
Sturmfels’
algorithms
1
2
hlm(G)i
4
3
2
1
Future
y3 6∈ lm (G)
• I = 〈G〉 but
•
lm (I) 6= lm (G)
Gröbner basis: precise definition
G a Gröbner basis of ideal I?
Geometry of
Hilbert
polynomials
and Gröbner
bases
John Perry
4
Gröbner bases
and monomial
orderings
Gröbner bases
3
Geometry of orderings
Hilbert
polynomials
Caboara,
Sturmfels’
algorithms
1
2
hlm(G)i
4
3
2
1
Future
y3 ∈ lm (G)
• I = 〈G〉 and
•
lm (I) = lm (G)
Gröbner basis: facts
Geometry of
Hilbert
polynomials
and Gröbner
bases
John Perry
Gröbner bases
and monomial
orderings
Gröbner bases
Geometry of orderings
• finite GB exists for any I
• GB varies by equivalence class
•
•
size, density, complexity
unique “reduced GB”
Hilbert
polynomials
Caboara,
Sturmfels’
algorithms
Future
Computing Gröbner bases
Geometry of
Hilbert
polynomials
and Gröbner
bases
John Perry
Buchberger’s algorithm (1965), others
• while lm (G) 6= lm (I) :
Gröbner bases
and monomial
orderings
Gröbner bases
4
Geometry of orderings
3
Hilbert
polynomials
2
Caboara,
Sturmfels’
algorithms
4
3
2
1
1
Future
add • to G
• • “easy”
iff
lm (G) 6= lm (I)
Minkowski sum of Newton polyhedra
Geometry of
Hilbert
polynomials
and Gröbner
bases
John Perry
another view of orderings
F = x + y − 4, xy − 1
2
2
Gröbner bases
and monomial
orderings
Gröbner bases
Geometry of orderings
Hilbert
polynomials
3
Caboara,
Sturmfels’
algorithms
2
Future
1
1
2
3
(vertex ← exponent vector of each u ∈ f1 · · · fm )
Big-time fact
Normal cones of Minkowski sum of F
l
equivalence classes
Geometry of
Hilbert
polynomials
and Gröbner
bases
John Perry
Gröbner bases
and monomial
orderings
Gröbner bases
Geometry of orderings
4
Hilbert
polynomials
3
Caboara,
Sturmfels’
algorithms
2
Future
1
1
2
3
4
classification of orderings ←→ discrete geometry
(Gritzmann and Sturmfels, 1993)
Outline
Geometry of
Hilbert
polynomials
and Gröbner
bases
John Perry
1 Gröbner bases and monomial orderings
Gröbner bases
and monomial
orderings
Gröbner bases
Geometry of orderings
2 Hilbert polynomials
3 Caboara, Sturmfels’ algorithms
4 Future
Hilbert
polynomials
Caboara,
Sturmfels’
algorithms
Future
Hilbert function: definition from example
Geometry of
Hilbert
polynomials
and Gröbner
bases
John Perry
Gröbner bases
and monomial
orderings
2.5
2
Gröbner bases
Geometry of orderings
1.5
1
Hilbert
polynomials
0.5
-0
Caboara,
Sturmfels’
algorithms
-0.5
-1
-1.5
Future
-2
-2.5
-2.5
-2
-1.5
-1
-0.5
-0
0.5
1
dimF (•)?
1.5
2
2.5
Hilbert function: precise definition
R = F x1 , . . . , xn , homogeneous ideal
Geometry of
Hilbert
polynomials
and Gröbner
bases
John Perry
Hilbert function:
Gröbner bases
and monomial
orderings
HFI : N → N
Gröbner bases
Geometry of orderings
d → dimF (Rd /Id ) .
Hilbert
polynomials
Caboara,
Sturmfels’
algorithms
Facts
3
4
3
2
1
1
2
• HFI = HF lm(I)
〈
〉
4
Future
• ∃ HFI for all I
dimF (Rd /Id ) = dimF R/ lm (I) d
Hilbert polynomial
Hilbert polynomial:
Geometry of
Hilbert
polynomials
and Gröbner
bases
John Perry
HPI (d) = HFI (d) for “sufficiently large” d.
Gröbner bases
and monomial
orderings
Gröbner bases
4
Geometry of orderings
3
Hilbert
polynomials
1
2
Caboara,
Sturmfels’
algorithms
Facts
• ∃ HFI , HPI for all I
• deg HPI = dimF (•)
4
3
2
1
Future
HFI (d) ¡
GB (I)
Geometry of
Hilbert
polynomials
and Gröbner
bases
John Perry
Know G = GB (I), not HFI ?
Gröbner bases
and monomial
orderings
• HF lm(G) = HFI
〈
〉
• “easy” to compute:
Gröbner bases
Geometry of orderings
Hilbert
polynomials
HSI , power series expansion of HFI
• HPI
•
Caboara,
Sturmfels’
algorithms
Future
Know HFI , not GB (I)?
• HFI (d) degree d mononomials not in lm (G) d ?
(
(
• (
degree
d(
pairs
(((
HFI (d) ¡
GB (I)
Geometry of
Hilbert
polynomials
and Gröbner
bases
John Perry
Know G = GB (I), not HFI ?
Gröbner bases
and monomial
orderings
• HF lm(G) = HFI
〈
〉
• “easy” to compute:
Gröbner bases
Geometry of orderings
Hilbert
polynomials
HSI , power series expansion of HFI
• HPI
•
Caboara,
Sturmfels’
algorithms
Future
Know HFI , not GB (I)?
• HFI (d) degree d mononomials not in lm (G) d ?
(
(
• (
degree
d(
pairs
(((
Outline
Geometry of
Hilbert
polynomials
and Gröbner
bases
John Perry
1 Gröbner bases and monomial orderings
Gröbner bases
and monomial
orderings
Gröbner bases
Geometry of orderings
2 Hilbert polynomials
3 Caboara, Sturmfels’ algorithms
4 Future
Hilbert
polynomials
Caboara,
Sturmfels’
algorithms
Future
Problem statement
Geometry of
Hilbert
polynomials
and Gröbner
bases
John Perry
Gröbner bases
and monomial
orderings
Gröbner bases
• GB varies by equivalence class
•
•
size, density, complexity
some orderings more efficient than others
Is it advisable to change orderings while computing a Gröbner
basis?
Geometry of orderings
Hilbert
polynomials
Caboara,
Sturmfels’
algorithms
Future
“Tentative” Hilbert functions
Geometry of
Hilbert
polynomials
and Gröbner
bases
John Perry
¬ € ж
J = lm Gh
Gröbner bases
and monomial
orderings
Gröbner bases
Geometry of orderings
Definition
tentative Hilbert function of 〈G〉 is HFJ
Hilbert
polynomials
Caboara,
Sturmfels’
algorithms
Future
Example 1
Geometry of
Hilbert
polynomials
and Gröbner
bases
John Perry
Gröbner bases
and monomial
orderings
• Gh = x2 + y2 − 4h2 , xy − h2
€ Š • lm Gh = x2 , xy
HSJ (t) =
t2 − t − 1
−t2 + 2t − 1
HSI (d) =
t2 + 2t + 1
−t + 1
Gröbner bases
Geometry of orderings
Hilbert
polynomials
HPJ (d) = d + 2
Caboara,
Sturmfels’
algorithms
Future
HPI (d) = 4
Example 1
Geometry of
Hilbert
polynomials
and Gröbner
bases
John Perry
Gröbner bases
and monomial
orderings
• Gh = x2 + y2 − 4h2 , xy − h2
€ Š • lm Gh = x2 , xy
HSJ (t) =
t2 − t − 1
−t2 + 2t − 1
HSI (d) =
t2 + 2t + 1
−t + 1
Gröbner bases
Geometry of orderings
Hilbert
polynomials
HPJ (d) = d + 2
Caboara,
Sturmfels’
algorithms
Future
HPI (d) = 4
Example 2
Geometry of
Hilbert
polynomials
and Gröbner
bases
John Perry
Gröbner bases
and monomial
orderings
Gröbner bases
G = x3 y2 + 5776x2 y3 + · · ·, x4 y + · · ·
tdeg, x > y
tdeg, x < y
HPJ (d) = 4d − 1
HPJ (d) = 3d + 4
Geometry of orderings
Hilbert
polynomials
Caboara,
Sturmfels’
algorithms
Future
Which ordering “better”?
Geometry of
Hilbert
polynomials
and Gröbner
bases
John Perry
If G not GB,
5
5
4
4
3
3
2
2
1
1
Gröbner bases
and monomial
orderings
Gröbner bases
Geometry of orderings
1
2
3
4
R/ lm (G)
5
Hilbert
polynomials
Caboara,
Sturmfels’
algorithms
1
2
3
4
R/ lm (I)
HFI (d) = dimF (R/I)d
∴ minimize HF〈lm(G)〉 (d) in long run
5
Future
Example
Geometry of
Hilbert
polynomials
and Gröbner
bases
John Perry
Gröbner bases
and monomial
orderings
Gröbner bases
Geometry of orderings
HPI
3d + 4
4d − 1
0
4
-1
1
7
3
2
10
7
d
3
4
13 16
11 15
5
19
19
6
22
23
#GB
5
15
Hilbert
polynomials
Caboara,
Sturmfels’
algorithms
Future
Gritzmann-Sturmfels algorithm
Geometry of
Hilbert
polynomials
and Gröbner
bases
John Perry
Gröbner bases
and monomial
orderings
“Dynamic” Buchberger algorithm:
Gröbner bases
Geometry of orderings
• after adding new polynomial:
•
•
Hilbert
polynomials
compute HF for each normal cone
select ordering w/“best” HF
Caboara,
Sturmfels’
algorithms
Future
Gritzmann-Sturmfels, 1993
Caboara algorithm
Geometry of
Hilbert
polynomials
and Gröbner
bases
John Perry
Gritzmann-Sturmfels algorithm:
Gröbner bases
and monomial
orderings
• compute HF for each normal subcone
Gröbner bases
Geometry of orderings
Hilbert
polynomials
Observations
• trade-off in complexity
•
•
Caboara,
Sturmfels’
algorithms
most timings improve
some worsen
Future
• only implementation of Gritzmann-Sturmfels algorithm?
Caboara, 1993
Caboara algorithm
Geometry of
Hilbert
polynomials
and Gröbner
bases
John Perry
Gritzmann-Sturmfels algorithm:
Gröbner bases
and monomial
orderings
• compute HF for each normal subcone
Gröbner bases
Geometry of orderings
Hilbert
polynomials
Observations
• trade-off in complexity
•
•
Caboara,
Sturmfels’
algorithms
most timings improve
some worsen
Future
• only implementation of Gritzmann-Sturmfels algorithm?
Caboara, 1993
Outline
Geometry of
Hilbert
polynomials
and Gröbner
bases
John Perry
1 Gröbner bases and monomial orderings
Gröbner bases
and monomial
orderings
Gröbner bases
Geometry of orderings
2 Hilbert polynomials
3 Caboara, Sturmfels’ algorithms
4 Future
Hilbert
polynomials
Caboara,
Sturmfels’
algorithms
Future
Open question
Geometry of
Hilbert
polynomials
and Gröbner
bases
John Perry
Gröbner bases
and monomial
orderings
Gröbner bases
Geometry of orderings
• small penalty to compute HF
• diminishing benefit from “better” order
• when quit computing HF?
• guess: when HFJ (d) stable up to largest degree pair?
Hilbert
polynomials
Caboara,
Sturmfels’
algorithms
Future
Finis
Geometry of
Hilbert
polynomials
and Gröbner
bases
John Perry
Gröbner bases
and monomial
orderings
Thank you!
• LATEX
•
•
Beamer
•
• audience
Gröbner bases
Geometry of orderings
Hilbert
polynomials
Caboara,
Sturmfels’
algorithms
Future