Title:Self-organizationofstresspatternsdrives statetransitionsinactincortices Authors:TzerHanTan1+,MayaMalikGarbi2+,EnasAbu-Shah2,3+#,JunangLi1,Abhinav Sharma4,6,FredC.MacKintosh4,KinneretKeren2,3,5*,ChristophF.Schmidt6,7*,Nikta Fakhri1,6* * Correspondingauthors + # Theseauthorscontributedequally Currentaddress:KennedyInstituteofRheumatology,UniversityofOxford,Oxford,UK Affiliations: 1 DepartmentofPhysics,MassachusettsInstituteofTechnology,Cambridge,MA,USA 2 DepartmentofPhysics,Technion–IsraelInstituteofTechnology,Haifa,Israel 3 RussellBerrieNanotechnologyInstitute,Technion–IsraelInstituteofTechnology, Haifa,Israel 4 DepartmentofPhysicsandAstronomy,VrijeUniversiteit,Amsterdam,TheNetherlands 5 NetworkBiologyResearchLaboratories,Technion–IsraelInstituteofTechnology, Haifa,Israel 6 ThirdInstituteofPhysics–Biophysics,GeorgAugustUniversity,Göttingen,Germany 7 GermanCenterforCardiovascularResearch(DZHK),Göttingen,Germany 1 Abstract Biologicalfunctionsrelyonorderedstructuresandintricatelycontrolledcollective dynamics.Incontrasttosystemsinthermodynamicequilibrium,orderistypically establishedandsustainedinstationarystatesbycontinuousdissipationofenergy. Non-equilibriumdynamicsisanecessaryconditiontomakethesystemshighly susceptibletosignalsthatcausetransitionsbetweendifferentstates.Howcellular processesself-organizeunderthisgeneralprincipleisnotfullyunderstood.Here,we findthatmodelactomyosincortices,inthepresenceofrapidturnover,displaydistinct steadystates,eachdistinguishedbycharacteristicorderanddynamicsasafunctionof networkconnectivity.Thedifferentstatesarisefromasubtleinteractionbetween mechanicalpercolationoftheactinnetworkandmyosin-generatedstresses. Remarkably,myosinmotorsgenerateactinarchitectures,whichinturn,forcethe emergenceoforderedstresspatterns.Reminiscentofsecondorderphasetransitions, theemergenceoforderisaccompaniedbyacriticalregimecharacterizedbystrongly enhancedstrainfluctuations.Thestrikingdynamicsinthecriticalregimewere revealedusingfluorescentsingle-walledcarbonnanotubesasnovelprobesofcortical dynamics. OneSentenceSummary Actincorticesdisplaytransitionsbetweensteadystateswithdistinctstructuresand stresspatternsymmetries. 2 MainText Phasesofmatteraretypicallycharacterizedbysymmetryorcollectiveorderofits components.Changesinthisorderorsymmetryoftencorrespondtophasetransitions inclassicalequilibriumstatisticalphysics(1).Dynamicfunctionsoflivingsystemsalso requirespecificformsandcollectiveorder.However,incontrasttoequilibriumsystems, organismsbuildorderedstructuresthroughthedissipationofmetabolicenergy(2-4).A generalizationofequilibriumconceptscanprovideinsightintohoworderemergesin thesenon-equilibriumsystems. Dissipativecellularstructureshavetoberobustandformstablesteadystates lastingfromsecondstothelifetimeoftheorganism.Atthesametime,theyhavetobe highlyadaptiveandreorganizeinresponsetointernalorexternalsignals.Aclassical caseofcollectivedynamicswithhighsensitivitytocontrolparametersisobservedin systemsnearacriticalpointorsecond-orderphasetransition.Suchtransitionsare characterizedbythecontinuousdevelopmentoforder,whichdistinguishestwophases (1).Atsuchatransition,thesusceptibilitytocertaincontrolparametersdiverges,and thesystemdisplayslargefluctuationswithextendedspatialandtemporalcorrelations. Criticalityisemergingasanimportantfunctionalfeatureinbiologicalsystems,with regulatorymechanismspositioningsystemsnearcriticality(5). Aprominentexampleofanadaptivedissipativestructureisthecellcortex.The cortexisaquasi-2Dnetworkofdynamicallycrosslinkedactinfilamentsthat continuouslypolymerizeanddepolymerize(6).Thismicronthicknetworkisanchoredto thecellmembraneandisinternallyactivatedbymyosinmotorproteins.Thecortex providesmechanicalintegrityandrigiditytocellsoverextendedtimescales,whileits componentsturnoverwithinminutes(7,8).Inaddition,thecortexundergoesdramatic reorganizationsduringcellularprocessessuchasdivision,generationofpolarityand motility(9-11).Theseprocessesoftenentailtransitionsfromhomogeneousto inhomogeneousstatesvianetworkcontraction(12,13).Howdoesthecortexachieve theseeminglyimpossiblefeatofswitchingbetweenstabilityandlarge-scale reorganization? 3 Cortexstructureanddynamicsarecontrolledbyasubtleinterplaybetweenactin turnover,networkconnectivity,aswellasstrainsandstressesgeneratedbynon-muscle myosinmotors(14-16).Characteristictimescalesareontheorderofsecondsforall theseprocesses(14,17).Experimentalaccesstotheactivemechanicsofcorticeshas beenseverelylimited.TechniquessuchasAFMindentation(18)orpipetteaspiration (19)onlyprovideglobal,coarse-grainedmeasurements,notcapturingspatial inhomogeneity,anisotropyandtime-dependence(14).Microrheology(19)could,in principle,providelocalinformation,butitsuseinthecortexhasbeenlimitedbythelack ofsuitableprobes;micron-sizedcolloidalbeadsaretoolargetopenetratethethin cortexwithoutperturbingit,whilenanometer-sizedparticles,suchasquantumdots,are toosmalltoremaininthenetworkforlongenoughtoprobeit. Here,weusefluorescentsingle-walledcarbonnanotubes(SWNTs)asprobesto demonstratethatasubtleinteractionbetweenmechanicalpercolationofthenetwork andpropagationofmyosin-generatedstressesleadstostructurallyanddynamically distinctsteadystatesinmodelactincortices.Transitionsbetweenthesestatesare accompaniedbystrikingchangesinthesymmetryofstresspatterns,includingacritical regimecharacterizedbystronglyenhancedstrainfluctuations. Weformeddynamiccortices,invitro,byencapsulatingXenopuseggextractin water-in-oilemulsiondroplets(Fig.1)(20).LocalizationofActAproteintothewater-oil interfaceactivatedArp2/3-mediatednucleationofbranchedactinnetworks(Fig.1B), generatinghomogeneous,~1µmthick,corticalactinnetworks.Thesenetworks exhibitedcontinuousactinturnoverwithatypicaltimescaleof~1min(Fig.S1)aswell asmyosin-drivennetworkdynamics,inastablecell-likegeometry.Dropletswere flattenedandconfinedbetweenhydrophobiccoverslipsforobservation.Thedroplets were~100µmindiameterandhadafixedheightof30µm.Thecorticalactinnetworks wereimagedbyconfocalmicroscopy(Fig.1A).Toresolvenetworkdynamicsathigher resolutions,weusednear-IRfluorescentSWNTsasnovel“stealth”probes(Fig.1B). SWNTsare~1nmindiameterand~100-300nminlength(17).WefoundthatSWNTs easilypenetratethethincortexwithoutperturbingthenetworkand,duetotheirlarge 4 aspectratio(21),getentrappedforlongenoughtimestoreportonnetworkdynamics. Duetotheirextremephotostability,theSWNTscouldbetrackedoverabroadwindow oftimescales(millisecondstohours). Indropletsofbareextract,weobservedhomogeneouscortices(Fig.1A)withno discernablenetworkmovement.Sincemyosinscanonlydrivelarge-scalemovement whenthenetworkissufficientlycrosslinked,weincreasednetworkconnectivityby addinganactincrosslinker,α-actinin.Increasingcrosslinkerconcentrationinthissystem leadstobreakingofsymmetryandformationofapolarcap(20).Wefoundthat,asa functionofcrosslinkerconcentration,wecoulddrivethesystemintothreedramatically differentdynamicsteadystates,referredtoaslow,intermediateandhighconnectivity (Fig.2).Inallstates,continuousactinturnoverwasmaintained(FigS1). Atlowconnectivity(0-1.5µMaddedα-actinin),corticesremained homogeneous,andSWNTsfluctuatedrandomly(Fig.2A,MovieS1).Thehomogenous actindistributionreflectsadynamicsteadystate,withcontinuousactinpolymerization catalyzedbytheActAatthesurfaceanddepolymerizationtothebulk(Fig.S1).Acontrol experimentwithmyosinimmuno-depletedextracts(Fig.S2)showedthatthespatially uncorrelatedandrandomprobemotionswerelargelymotordriven. Atintermediateconnectivity(2.0-2.5µMaddedα-actinin),coherentlymoving clustersofSWNTsappearedwithdiametersupto10µm.Strikingly,theclustersmoved overlongdistanceswithinthecortex,withoutgeneratinglarge-scaleactindensity inhomogeneities(Fig.2B,MovieS2).Theclustersmovedinavorticalmanner,withhigh directionalpersistence,attypicalspeedsof~10µm/min.Thismotionwaslikelydriven bycontractileforcesactingbetweenclusters.Occasionalrapidchangesofcluster velocities(MovieS3)canbeexplainedbytheruptureoftenuousbridges,contractedby fewmyosinminifilaments.Notethatthemechanismofforcegenerationisdifferent fromthatofactiveswimmers(22),suchasfishinaschool,whereparticlespropel themselvesbyexertingaforceagainstanembeddingmediumorasurface.The dynamicsinourmodelcorticesarealsodifferentfromtheobservedphenomenain 5 highlyconcentratedmotoractivatedsolutionsofactinfilaments(23)andmicrotubules (24),whereorderisimposedthroughstericrepulsionbetweenlongfilaments. Athighconnectivity(3.0-4.0µMaddedα-actinin),corticesphaseseparatedand formedalargecap,whichextendedoverasubstantialfractionofthedropletsurface, butremainedessentially2-dimensional.Smallclusterscontinuouslynucleatedand flowedradiallytowardsthecap.Thiscontractionwasvisibleinboththeactinandthe SWNTfluorescencechannels(Fig.2C,MovieS4andS5).Thevelocityoftheconverging clusterswas~10µm/minintheperipheryanddecreasedtowardsthecap(MovieS5). Thecapsformedatrandompositions,butonceformed,remainedstableforatleast2 hours.Theratioofintensitiesbetweenthecapregionandperipheralaccretionzones alsoremainedconstantovertime(Fig.S3).Thisshowsthatthesystemisatsteadystate, maintainedbythecontinuousdisassemblyofactinfromthecap. Astrikingfeatureofthesenon-equilibriumsteadystatesisthattheyalldisplay distinctpatternsofmotionwhileonlythehighconnectivitystateexhibitsan inhomogeneousdensitypattern.Two-dimensionalcorrelationanalysisofSWNT velocitiesshowsarapidbutcontinuousgrowthofcorrelationlengthatintermediate connectivity(Fig.S4).Increasingcorrelationlengthreflectsincreasingconnectivityinthe actincortex,andtheshapeofthecurve(Fig.S4)indicatescooperativityandis reminiscentofconnectivitypercolation(25).Breakingupofthenetworkintoindividual clustersiscommonlyobservedasaconsequenceofcrosslinking,especiallyin combinationwithcontractilemotors(26,27).Incontrasttoprevioussystems,inour dissipativesteady-statesystem,theclustersmaintaintheirsizebutaredynamic,with theirlifetimeexceedingthatoftheircomponents,i.e.theydisplaycollectivestructural memory.Themostprominentfeatureweobserveisthelongdistancemovementofthe clustersdrivenbymyosinmotors,demonstrating,inaddition,acollectivemotion memory. Atintermediateconnectivity,patternsofmotionsfluctuatestrongly(MovieS2 andFig.2B),analogoustofluctuationsobservednearacriticalpointofanequilibrium system.Toquantifyfluctuations,weextractchangesofvelocityinfixedpositionsinthe 6 cortex.Wecalculatedthenormalizedcoarse-grainedvelocityfluctuation autocorrelationintime(Fig.3A), C! Δ (τ ) = ΔV̂α ( t ) ⋅ ΔV̂α ( t + τ ) αT .Velocityfluctuation, ΔV ,isthedifferencebetweenthevelocityinagivencoarse-grainedbox Vα ( t ) andthe time-averagedvelocityinthesamebox Vα T (SeeSI).Figure3Ashowsthevelocity fluctuationautocorrelationintimefora5x5gridatthedifferentcrosslinker concentrations.Localaveragevelocitiesareclosetozeroatlowandintermediate connectivitybutnon-zeroandconvergingtothecapathighconnectivity.Fluctuations havesmallamplitudesandarerapidatlowconnectivity,butgainamplitudeand persistenceatintermediateconnectivity,tobecomeofsmallamplitudeagainathigh connectivity.Weconstructedascalarorderparametertoquantifythepersistenceof localvelocities.Theorderparameterwascalculatedastheangularcorrelationof velocitiesinthecoarse-grainedboxes, cosφ 50 s ,averagedovertimeintervalsof50s, longerthanthecorrelationtimeofamyosinmini-filament(~5s(17))(Fig.3B).The orderparametershowsasteepincreaseatintermediateconnectivity,analogoustoa secondorderequilibriumphasetransition.Theincreasingorderinprobeparticle velocitiesreflectsspatialorderingofthelocalstresses,ratherthanliquid-crystalline nematicstructureofthefilamentsinthecortex.Fromtherelativenumbersof homogeneousandphase-separatedcorticesatagivencrosslinkerconcentration, inferredfromimagesofrhodamine-labeledactin,weconstructedanactin-densitybased structuralorderparameter(Figs.3CandS5).Thisorderparameterconfirmsaglobal phaseseparationathighconnectivity. Nearcriticalpoints,systemsexhibitextendedcorrelationsoverlength-scales thatsubstantiallyexceedmolecularscales.Toextracttheaveragespatialextentof correlatedvelocityfluctuationsdrivenbythefluctuatingarrangementsofstress generatingmotors,weusedthedeviationsfromtheoveralllocalvelocityaverages.The normalizedvelocityfluctuationcorrelationfunctioninspace(seeSI)(Fig.3D)was ( ) ( " " " " calculatedas C! Δ ( R ) = Δv̂i ( ri ,t ) ⋅ Δv̂ j rj ,t δ ri − rj − R ) ijT .Velocityfluctuation, Δvi ,is thedifferencebetweenthevelocityofanindividualparticle vi andtheoverallaverage 7 velocityinthecoarse-grainedbox α containingparticle i , Vα T (SeeSI).Atlow connectivity,spatialcorrelationsofvelocityfluctuationsaresmall.Athighconnectivity, deviationsfromthelocalaveragevelocity,whichiszerointhecapregionandnon-zero intheperiphery,arealsosmall,sothatcorrelationsbecomeburiedinthenoise.At intermediatecrosslinkdensitiesormarginalconnectivity,however, C Δ ( R ) showsa characteristicfluctuationcorrelationlengthof~15µmsmaller,thanbutapproaching thesystemsize(Fig.3E). Anotherhallmarkofequilibriumcriticalpointsisdivergingsusceptibility,i.e.a divergingresponsetoexternaldrivingsuchasanappliedforcefield(1).Inthenonequilibriumsteadystatesofthecortices,drivingisnotexternal,butcausedbymyosin motorscreatinganinternalstressfield.Wedefinesusceptibilityastheamountof changesinpatternsofmotioninresponsetosmallchangesinthestressfield,i.e.the additionorremovalofafewmyosinmotors.Analogoustothermalfluctuationsin equilibrium,inourmodelsystem,myosinon/offkineticsprovidesstochasticforce fluctuations.Thuswecaninfersusceptibilityfromthestrainfluctuationsdrivenbythese forcefluctuations.Toobtainameasureofsusceptibilityfromtheobservedpatternsof motion,wecalculatedthevarianceofvelocityfluctuationcorrelationsatafixed distancelargerthanthetypicallengthofasingleactinfilament(>1µm).Figure3F showsthatthisvarianceexhibitsabroadpeakatintermediateconnectivity. Interestingly,anumericalsimulationofanisotropicallystretched2Dnetworkoflinear springsalsoshowscorrelatedstrainfluctuations,i.e.movingclusters,nearconnectivity percolation(Fig.S6,seeSI). Thethreestatesdifferinthesymmetryofthepatternsofmotionoftheprobe particles.Toquantifyaveragesymmetryandorderoftherespectivestates,we calculateddirectionalcorrelationfunctionsfortheentiresetsofdata(Fig.4).This functionwasconstructedbycalculatingthevelocity-velocitydirectionalcorrelationfor eachmovingprobe,withallthesurroundingprobes,asafunctionofdistanceandangle withrespecttoitsowndirectionofmotion,andthenaveragingoverallmovingparticles inallmovies(28)(seeSI). 8 Atlowconnectivity,patternsarefullysymmetric,andnocorrelationisobserved (Figs.4AandS7).Atintermediateconnectivity,thevectorfieldofprobevelocities beginstoshowcurlbutnodivergence(Figs.4BandS7).Theinnerregionofpositive correlationinFig.4Breportsaverageclustersize,consistentwithclustersize determinedfromdisplacementcorrelations(Fig.S8).Thebreakingofrotational symmetryisevidentfromtheextendedpositivecorrelationsaround0°and180°,i.e.a finiteprobabilitythatparticlestrailingandleadingagivenparticlemoveinthesame direction.Suchabreakingofrotationalsymmetryischaracteristicfornematicliquid crystals.Notethatinthiscase,orderingofvelocitiesimpliesapolarnematic(22,29).In oursystem,orderisnotgeneratedbyalignmentofactinfilamentsthroughentropy maximization,asistypicallythecaseforequilibriumnematics.Rather,thealigned velocityvectorslikelyreflectunderlyingorderingofcontractilemyosinminifilaments thatcanbeconceptualizedasforcedipoles.Athighconnectivity,thevelocityvector fieldaroundthecapshowsdivergence,ratherthancurl,i.e.itreflectsbroken translationalsymmetry(Figs.4CandS7).Thedirectionalcorrelationfunctionclearly showsfirst,anextendedcorrelationlengthorcapsize,andsecond,anasymmetry between0°and180°whichisasignatureofaconvergingflowfield(Fig.S9).This convergingvelocityfieldlikelyreflectsaradialstresspattern,i.e.aradialorientationof myosinforcedipoles.Suchglobalcentrosymmetricpolarorderisnotobservedintypical liquidcrystals.Thecrucialdifferenceinoursystemisthelackofconservationof particlesbecauseofcontinuousactindepolymerizationinthecapandrecyclingof monomerstothebulk. Figure4(D-F)presentsaconceptualmodelfortheobservednon-equilibrium steadystates.Thegenerationoforderandthebreakingofsymmetryinthecortexare drivenbytheinterplayofnetworkconnectivityandactivestresses.Increasing connectivitydrivesthenetworktowardsmechanicalpercolation,whichactslikeaclutch allowingmyosinmotorstoexertincreasinglylong-rangeforces.Thisleadstolong-range transportinthecortexandstructuralrearrangements,whichinturn,feedsbackonthe arrangementoftheforce-generatingmyosinmotors.Theobservednematicand 9 centrosymmetricpolarordersinprobevelocitiesthusreflecttheorderinthe orientationofthestressgenerators(myosinminifilaments).Atlowconnectivity(Fig. 4D),myosinwillengageactin,butwillnotdrivecorrelatedmotionsoverdistances longerthanfilamentlength.Atintermediateconnectivity(Fig.4E),theeffectiverange ofstresspropagationexpands.Thecombinationofcontractilityandcrosslinkingcreates relativelyrigidislandsoflimitedsize,wherethedensityisnotdifferentenoughtobe visiblebyactinfluorescence,butthemobilityofprobeparticleswithinclustersis stronglysuppressed.Myosin-activatedcontractilebridgesmovetheclustersinrandom andchangingdirections.Notethatcompetingmotorscanalsoacceleratebridge rupture,creatinganegativefeedbackmechanismforclustergrowth(MovieS3).We speculatethatinourcase,inthepresenceofconstantturnover,clustersize(rc)is primarilylimitedbythecompetitionbetweenaccretionattheboundary(∝rc)and depolymerizationwithinthecluster(∝rc2).Athighconnectivity(Fig.4F),atransition occurswhenthelargestclusterreachessystemsizesandconcentratesactinfilaments, motors,andcrosslinkers,suchthataradialgradientislikelytoemerge.Thiscreatesnet polymerizationintheperipheryandnetdepolymerizationinthecap,setsupasteady flowofsmallclusterstowardsthecap,andinturnorientsthemotordipolesradiallyin theperiphery.Thismodelpredictsasystem-sizedependenceofthesecondtransition. Theobserveddynamicshighlightsomeoftheuniquepropertiesof“active matter”:activestressesandmechanicalstructurescancoupleincomplexandsubtle wayssuchthatdrasticallydifferentdynamicpatternscanresultfromshiftsinthe balancebetweencompetingmoleculartimescales.Theintermediatecaseofmarginal connectivityresemblesacriticalstate,albeitinanon-equilibriumsituation,andshows maximalsusceptibilitytointernalstressvariations.Thiscriticalstateextendsovera relativelybroadcrosslinkerconcentrationrange,whichisafeatureofarobuststate. Thisrobustnessisahallmarkofself-organizedcriticality(26,30).Invivodynamic transitionssuchascorticalsymmetrybreakinginC.elegans(9,10),thetransitionintoa contractileringinoocytes(31),membranestirring(32)ortheformationof immunologicalsynapses(33)bearstrikingresemblancetoourobservations.This 10 suggeststhatthesamenon-equilibriummechanismsareatworkinvivo.Boththe connectivityofthenetworkandtheactivityofmyosinmotorscanbeactivelytunedby cellsinresponsetovarioussignalssuchasCa2+ions(15,34).WithSWNTsasideal probes,itnowremainstotacklethemuchmorechallengingproblemofmapping corticaldynamicsinlivingcells. 11 Figure1.Dynamicmodelactincortices Quasi-2DactinnetworksweregeneratedbyencapsulatingXenopuseggextractin water-in-oilemulsiondropletsandconfiningactinpolymerizationtotheinterface.(A) Equatorialcrosssectionofflatteneddroplets.SimultaneousconfocalimagingofbodipyconjugatedActA(green,left)andrhodamine-labeledactin(magenta,right).Amphiphilic bodipy-ActAlocalizestothewater-oilinterfaceandcatalyzestheformationofaquasi 2DdynamicactinnetworkbylocalactivationofArp2/3.(B)Top:Schematicofthe experiment.Corticaldynamicsaretrackedneartheflatbottomsurfaceofthedroplet. Thereiscontinuousturnoverbetweenthethinpolymericactinlayerandactin monomersinthebulk(arrows).Bottom:Zoomedinschematicoftheessential componentsofthecortex.IRfluorescentSWNTsareinsertedasprobesofcortex dynamics. 12 [α-actinin] level A B C Time(s) 200 0 20μm Figure2.Signaturesofdistinctsteadystates. Networkpercolationcanbeinducedbyincreasingcrosslinkersdensity(α-actinin).Three distinctsteadystatescanbeidentifiedbasedonqualitativedifferencesincollective networkdynamicsimagedinthebottomcorticallayerinthedroplets.(A)Low crosslinking(0-1.5µMaddedα-actinin,imagesshown:1.5µM)(B)Intermediate crosslinking(2-2.5µMaddedα-actinin,imagesshown:2.5µM).(C)Highcrosslinking(34µMaddedα-actinin,imagesshown:3µM).(A-C)Topleft:Fluorescenceimageof insertedSWNTprobes.Topright:Confocalimageoftheactindistribution.Bottom: IndividualSWNTsweretrackedinmoviesof200slongwith2000frames(MoviesS1- S4).TracksofindividualSWNTscolor-codedforprogressionintime.(Scalebar=20µm) 13 1 B 0.6 0.4 Low Int. High 0.2 0 40 Lag time, τ (s) 60 1.5 μM 2.0 μM 3.0 μM 0 0 0 80 20 D ~ Velocity fluctuation correlation C∆(R) 1 20 Correlation length (μm) 0 10 20 30 Distance, R (μm) 40 50 16 12 1 2 3 [α-actinin] (μM) 0.8 0.6 Low Int. High 0.2 0 2.0 E C 0.4 4 1.6 1 2 3 [α-actinin] (μM) 4 F 1.2 Low Int. High 8 0.8 Low Int. High 0.4 4 0 Fraction with Polar Cap Velocity fluctuation correlation C∆(τ) ~ 1.5 μM 2.0 μM 3.0 μM C∆(R≈5 μm) x10-4 0.8 A <cos(φ)> 1 0 1 2 3 [α-actinin] (μM) 4 1 2 3 [α-actinin] (μM) 4 Figure3.Collectivedynamicsandcriticalfluctuations. Steadystatesdifferinthedegreeoforderandcorrelationofprobeparticlevelocities. (A)Normalizedvelocityfluctuationautocorrelationisplottedasafunctionoflagtime fordifferentα-actininconcentrationsevaluatedina5x5coarsegrainedgridfor200s movies,averagedoverallgridpoints.(B)Orderparametercalculatedfromtheaveraged velocitydirectionalpersistenceasafunctionofα-actininconcentration.(C)Anactin density-basedstructuralorderparametershowingthefractionofphase-separated corticesasafunctionofcrosslinkerconcentration(0-4µMofaddedα-actinin),inferred fromimagesofactinfluorescence.(D)Thenormalizedvelocity-velocityfluctuation cross-correlationatzerolagtimeisplottedasafunctionofprobedistancesfordifferent α-actininconcentrations(symbols).Dataarefittedwithsingleexponentials(lines).(E) Characteristiccorrelationlengthsfromfitsin(D)asafunctionofα-actinin concentrations.Errorbars:95%confidenceinterval.(F)Susceptibilityofclustermotion tostressfluctuationsquantifiedfromthevarianceoftheamplitudeofthevelocityvelocityfluctuationcorrelationtakenatR=5µm,plottedasafunctionofα-actinin concentration.Errorbarscorrespondtostandarddeviations. 14 Figure4.Orderandsymmetriesinthestresspatterns. Increasingcrosslinkersdensityleadstoincreasingorderandbreakingofsymmetriesin thearrangementofstressgenerators.(A-C)Directionalvelocity-velocitycorrelation mapsthedegreeoforderandshowsbreakingofsymmetryforincreasingα-actinin concentrations.Foreachconcentration,thecolorsportraytheaveragealignmentof pairsofprobevelocities,asafunctionofthedistanceandanglebetweenthem(Ainset) Atlowcrosslinking(1µM;A)thereisnoappreciablecorrelation.Atintermediate connectivity(2.5µM;B),themapshowsenhancedcorrelations,distributed anisotropically,primarilyalongthefront-backaxis,signifyingtheemergenceofnematic polarorder,andthebreakingofrotationalsymmetry.Athighconnectivity(3µM;C),the convergingnetworkflowleadstoanasymmetrybetweentopandbottom,indicating theappearanceofcentrosymmetricpolarorderandthebreakingoftranslational symmetry.(D-F)Schematicillustrationoftheconceptualmodelforcortexdynamicsasa functionofconnectivity.Atlowconnectivity(D),thenetworkisnotmechanically connected,somyosincannotgeneratelong-rangeforces,andthenetworkfluctuates randomly.Atintermediateconnectivity(E),thenetworkreachesthemechanical percolationthreshold.Myosin-generatedstressescanpropagateoverlargerdistances, leadingtotheformationofrigidclusters,whichmoveinavorticalmanner.Theinterplay betweenstressesandnetworkrearrangementleadtolocalnematicorderingofthe force-generatingmyosinminifilaments.Athighconnectivity(F),thenetworkself 15 organizesintoasinglelargecapwithpersistentconvergingflowofclustersintothecap, andpolarorderingofthemyosinforcedipoles. 16 Referencesandnotes 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. V.L.Ginzburg,L.D.Landau,OntheTheoryofsuperconductivity.ZhEkspTeorFiz 20,1064(1950). J.L.England,Dissipativeadaptationindrivenself-assembly.NatNano10,919 (2015). E.Karsenti,Self-organizationincellbiology:abriefhistory.NatRevMolCellBiol 9,255(2008). I.Prigogine,G.Nicolis,Biologicalorder,structureandinstabilities.QRevBiophys 4,107(1971). T.Mora,W.Bialek,AreBiologicalSystemsPoisedatCriticality?JStatPhys144, 268(2011). G.Salbreux,G.Charras,E.Paluch,Actincortexmechanicsandcellular morphogenesis.TrendsCellBio22,536(2012). M.Fritzsche,A.Lewalle,T.Duke,K.Kruse,G.Charras,Analysisofturnover dynamicsofthesubmembranousactincortex.MolBiolCell24,757(2013). T.D.Pollard,J.A.Cooper,Actin,aCentralPlayerinCellShapeandMovement. Science326,1208(2009). M.Mayer,M.Depken,J.S.Bois,F.Julicher,S.W.Grill,Anisotropiesincortical tensionrevealthephysicalbasisofpolarizingcorticalflows.Nature467,617 (2010). E.Munro,B.Bowerman,CellularsymmetrybreakingduringCaenorhabditis elegansdevelopment.ColdSpringHarbPerspectBiol1,a003400(2009). Y.H.Teeetal.,Cellularchiralityarisingfromtheself-organizationoftheactin cytoskeleton.NatCellBiol17,445(2015). K.Carvalhoetal.,Actinpolymerizationormyosincontraction:twowaystobuild upcorticaltensionforsymmetrybreaking.PhilosTransRSocLondBBiolSci368, 20130005(2013). R.D.Mullins,Cytoskeletalmechanismsforbreakingcellularsymmetry.Cold SpringHarbPerspectBiol2,a003392(2010). G.T.Charras,M.Coughlin,T.J.Mitchison,L.Mahadevan,Lifeandtimesofa cellularbleb.BiophysJ94,1836(2008). M.A.Conti,R.S.Adelstein,NonmusclemyosinIImovesinnewdirections.JCell Sci121,11(2008). D.A.Fletcher,R.D.Mullins,Cellmechanicsandthecytoskeleton.Nature463, 485(2010). N.Fakhrietal.,High-resolutionmappingofintracellularfluctuationsusing carbonnanotubes.Science344,1031(2014). M.Kriegetal.,Tensileforcesgoverngerm-layerorganizationinzebrafish.Nature CellBiology10,429(2008). J.Y.Tinevezetal.,Roleofcorticaltensioninblebgrowth.ProcNatlAcadSciUSA 106,18581(2009). E.AbuShah,K.Keren,Symmetrybreakinginreconstitutedactincortices.Elife3, e01433(2014). 17 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. N.Fakhri,F.C.MacKintosh,B.Lounis,L.Cognet,M.Pasquali,Brownianmotion ofstifffilamentsinacrowdedenvironment.Science330,1804(2010). M.C.Marchettietal.,Hydrodynamicsofsoftactivematter.RevModPhys85, 1143(2013). V.Schaller,C.Weber,C.Semmrich,E.Frey,A.R.Bausch,Polarpatternsofdriven filaments.Nature467,73(2010). T.Sanchez,D.T.Chen,S.J.DeCamp,M.Heymann,Z.Dogic,Spontaneousmotion inhierarchicallyassembledactivematter.Nature491,431(2012). A.Aharony,D.Stauffer,IntroductionToPercolationTheory.(Taylor&Francis, 2003). J.Alvarado,M.Sheinman,A.Sharma,F.C.MacKintosh,G.H.Koenderink, Molecularmotorsrobustlydriveactivegelstoacriticallyconnectedstate.Nat Phys9,591(2013). S.Kohler,V.Schaller,A.R.Bausch,Structureformationinactivenetworks.Nat Mater10,462(2011). H.P.Zhang,A.Be'er,E.L.Florin,H.L.Swinney,Collectivemotionanddensity fluctuationsinbacterialcolonies.ProcNatlAcadSciUSA107,13626(2010). R.Voituriez,J.F.Joanny,J.Prost,Genericphasediagramofactivepolarfilms. PhysRevLett96,028102(2006). P.Bak,C.Tang,K.Wiesenfeld,Self-organizedcriticality.PhysRevA38,364 (1988). W.M.Bementetal.,Activator-inhibitorcouplingbetweenRhosignallingand actinassemblymakesthecellcortexanexcitablemedium.NatCellBiol17,1471 (2015). R.Raghupathyetal.,Transbilayerlipidinteractionsmediatenanoclusteringof lipid-anchoredproteins.Cell161,581(2015). T.Ilani,G.Vasiliver-Shamis,S.Vardhana,A.Bretscher,M.L.Dustin,Tcellantigen receptorsignalingandimmunologicalsynapsestabilityrequiremyosinIIA.Nat Immunol10,531(2009). K.Burridge,J.R.Feramisco,Non-muscle[alpha]-actininsarecalcium-sensitive actin-bindingproteins.Nature294,565(1981). Acknowledgements WethankAlexanderSolon,JacquesProst,SriramRamaswamy,MehranKardarandAlex Mogilnerfordiscussion.ThisresearchwassupportedbyaHumanFrontierScience ProgramFellowship(N.F.),J.HandE.V.WadeFundAward(N.F.),theClusterof ExcellenceandDFGResearchCenterNanoscaleMicroscopyandMolecularPhysiologyof theBrain(CNMPB)(C.F.S.),theEuropeanResearchCouncilAdvancedGrantPF7ERC2013-AdG,Project340528(C.F.S),theDeutscheForschungsgemeinschaft(DFG) CollaborativeResearchCenterSFB937(ProjectA2)(C.F.S.)andagrantfromtheIsrael ScienceFoundation(K.K.). 18
© Copyright 2026 Paperzz