Atomic Energy of Canada Limited3 THE THERMODYNAMICS OF METAL-WATER SYSTEMS AT ELEVATED TEMPERATURES PART 3: THE COBALT-WATER SYSTEM by DIGBY D. MACDONALD, G R SHERMAN and P BUTLER Whit»sl»*M Nucl«or Research E*tabH»hment Pinawa, ManHobo r 1972. ' . THE THERMODYNAMICS OF METAL-WATER SYSTEMS AT ELEVATED TEMPERATURES PART 3: THE COBALT-WATER SYSTEM by Digby D. Macdonaid*, G.R. Shiermaii** and P. B u t i e r t * ** t Research Chemistry Branch Assessineat and Applied Mathematics Branch Summer Student, May-September, 1971 Whiteshell Nuclear Research Establishment Pinawa, Manitoba ROE 1LO December, 1972 AECL-A138 THE THERMODYNAMICS OF METAL-WATER SYSTEMS AT ELEVATED TEMPERATURES PART 3: THE COBALT-WATER SYSTEM by Digby D. Macdonald*, G.R. Shiermdi** and P. Butlert * ** t Research Chemistry Branch Assessment and Applied Mathematics Branch Summer Student, May-September 1971 ABSTRACT Free energies of formation for cobalt, cobalt oxides and ionic species in solution are calculated at elevated temperatures by integrating free energy functions over the range 25°C to 300°C. These data are used to derive potential-pH relationships for the cobalt-water system and to calculate solubilities of cobalt and cobalt oxide (CoO) as a function of pH at the various temperatures considered. The potential-pH relationships predict an expanded region of corrosion in alkaline solutions at elevated temperatures. This prediction is consistent with the increased stabilitv of the anion, HCo0 2 , at higher temperatures. The solubility calculations predict that transport of Co by differential solubility occurs from the hotter to the colder regions of n non-isothermal system for pH 2 5 > 10. reverse occurs. At pH 2 5 = 9 the For CoO at 250°C < T < 300°C transport is predicted to occur from the hotter to the colder regions at p H 2 5 > 10. At p H 2 5 = 9 transport occurs in the reverse direction over the entire temperature range. Atomic Energy of Canada Limited Whiteshell Nuclear Research Establishment Pinawa, Manitoba ROE 1L0 December, 1972 AECL-4138 Thermodynamique des systèmes eau-métal aux températures élevées Troisième P a r t i e ; Système eau-cobalt par Digby D. Macdonald, G.R. Shierman et P. Butler* *etudiant, été 1971 Résume Les énergies libres de formation pour le cobalt, les oxydes de cobalt et les espèces ioniques en solution sont calculées a des températures élevées en intégrant les fonctions d'énergie libre dans l'intervalle allant de 25°C a 300°C. Ces données sont utilisées pour obtenir les relations potentlLei-pH pour le système ëau-cobait et pour calculer les solubilités du cobalt et de l'oxyde de cobalt (GoO) en fonction du pH aux diverses températures considérées. Les relations potentiel-pH prédisent une région étendue de corrosion, dans les solutions alcalines, aux températures élevées. Cette prédiction coïncide avec la stabilité accrue de l'anion, HCo0 2 , aux hautes températures. Les calculs de solubilité prédisent que le traasporE de Co par solubilité différentielle va des régions chaudes aux régions froides d'un système non-isothermique pour p H 2 5 > 10. A p H 2 5 = 9 le contraire ce produit. Pour CoO à 250°C < T < 300°C on prévoit que le transport ira aussi des régions chaudes aux régions" froides pour P H 25 > ^®' A pH-- = 9 le transport se produit en sens inverse dans tout l'intervalle de températures. L'Energie Atomique du Canada, Limitée Etablissement de Recherches Nucléaires de Whiteshell Pinawa, Manitoba, ROE 1L0 ,; Décembre 1972 3 AECL-4138 CONTENTS Page 1. INTRODUCTION 1 2. THEORY 1 2.1 POTENTIAL-pH RELATIONSHIPS 3 2.2 SOLUBILITY 4 3. INPUT DATA 4 4. RESULTS AND DISCUSSION 7 4.1 POTENTIAL-pH RELATIONSHIPS 7 4.2 SOLUBILITY 10 5. SUMMARY AND CONCLUSIONS- 13 6. REFERENCES 14 FIGURES 16 APPENDIX I CALCULATED THERMODYNAMIC FUNCTIONS FOR THE COBALT-WATER SYSTEM AT 298, 333, 373, 423, 473, 523, AND 573K T\,-''-->f •• v i ' - . ' V •;'•-"•..«'- •:. ': •-.• • ' • - ' • • ; ' h':' 25 - 1- 1. INTRODUCTION As part of a program to study the chemistry and corrosion behaviour of metals in water at elevated temperatures we report detailed thermodynamic calculations for reactions betweeu cobalt, cobalt oxides, cobalt ions and water at 25, 60, 100, 1505 200, 250, and 300°C. Previous studies of this type have been reported series for the copper-water and iron-water including two in the present systems. The calculated data include free energies of the various components of the cobalt/water system as well as standard free energy changes and potential -pH relationships for a number of reactions which are proposed to describe the chemical interaction between cobalt and water in high temperature systems. The standard free energy changes are further used to calculate solubilities of Co and CoO as a function of pH and temperature. 2. THEORY The prediction of equilibrium phenomena in water cooled nuclear reactors requires methods for calculating free energy changes for reactions in aqueous systems at elevated temperatures. The technique employed here has been previously described and full details of the computer program used to perform the computations are given elsewhere The free energy of a substance, for which heat capacity data are available, can be calculated as a function of temperature using equation [1]: T2 - TX - T2 ff \^j dT + Jf2 C°dT [1] where S°(T1) is the entropy of the substance at temperature For many pure substances heat capacities are frequently expressed as equation [2]: C° = A + BT + GT "P and fuhcMons 6F t h i s type have^been tabulated ^ K e l l e y : land^icfcsiandv u Block (9) v F&r-ibnic species involution^ •fbr-whichHeat^ capacityidatai are not generally available^ i t n a s ^ W f n o w t i M ^ ^ t h a t the free energy a t ; temperature-Tz6ah be calculate^using&iquatldn-[33: - ' G°(T Z ) where S 0 - - ! = G ^ ^ and S'(Ti) are the Absolute' entropies of the ion at temperatures T 2 and T x , respectively. Criss and Cobbl 6 ( l l ^ 2 ) have demonstrated that reliable estimates of ionic entropies at elevated temperatures can be made J using their 'correspondence principle': S°(TZ) = vhere a and b a r e constants which are unique for a given temperature and class of ion. The 'absolute' entropies at 25°C are based qn the scale where the entropy of the hydrogen ion is -2MS£j/Kimcl (i.e. -5 cal mol deg ) . Entropies of ions on the conventional scale S 0 ' can [s o ' H+ (25°C) = 0 J/K-molJ be transformed (ll ' 12) to the absolute scale using equation t5]: S°X25°C) =-S°.'(25°C) - 20.93 Z, J/K'iaol [5] where Z is the ionic^charge including sign. - Thus,, 'absolute1 entropies calculated using equations [4] and [5],are substituted into equation. [3] together with the free energy of formation of the ion at 25°C and the free energy at temperature T2 is derived. . _ -r - 3 - 2.1 • POTENTlAL-pH RELATIONSHIPS Electrochemical.processes which occur in aqueous systems can be rep res ented r ?by sa?combination gof,half-cell reactions of the following general form: t . . ,. . •; .. ... aA + 3H+ +* ye" = 6B + e H2O : [6] The equilibrium reduction potential referred to the standard hydrogen electrode at the same temperature is given by equation [7]: (a J B JV AG° RT., E T [7] where the quantity AG° is the standard free energy change for the whole cell reaction:'"'•'•.*'•"•''"""" lj"' " ^''[" ' '""."' aA + (g-Y)H + + X H 2 6B + eH20 [8] 2 i.e., G° is the standard free energy of formation of component x at the temperature of interest. For dilute solutions a ^ = 1, and by definition -log afl+ = i.e." the pH of the solution at temperature T. pH T Thus, equation [7] transforms into equation [10] which is then used to calculate the potential-pH relationship for any given reaction: 'Potential-pH relationships for reactions between cobalt, cobalt oxides and ions in aqueous solution at elevated temperatures are listed in * Appendix I. - 4 - 2.2 SOLUBILITY dissolutionM a solid f(A) a given typ^CS) can W AG° = presented by equation [8h At equilibrium: [11] -RTln <*H+> where p H tti produce ions involution of CP H2: is the partial pressure of hydrogen in the system. Expansion of 2 equation [ll] results in the following expression for the dependence of the activity of B on P H T and the pressure of hydrogen in the system, p ^ i The total solubility of A is equal to the sum of ionic concentrations from the individual reaction^ which contribute to the dissolution of the solid, i . e . ; •, .• S • = - • - • • ' . E(aB/YB) B [13] where Y B is the activity coefficient of ion••>/ in^ow-ioni%strength solutions (<0.01ra) the activity coefficients can be equated to unity 13 , and the total solubility is approximated by equation [14]: S = S afi [14] 3. INPUT DATA Free energies of formation and entropies at 25°C for Co, CoO, 2+ C03O1,, Co ,.HCo0i, OH", H 2 , 0 2 , and H 2 0 were taken from the recent NBS compilations of thermodynamic data^11*'15 and are listed in Appendix I . All entropies are based on the absolute scale. The thermodynamic data listed in Appendix I aTe expressed in units of calories. These data may be converted to the SI metric systpm using the relationship 1 cal = 4.1868 J. - 5 - Free energies for H at temperatures to 300 °C have been calculated in a previous report in this series and the same values are used here. Heat capacities of the pure substances have been taken directly from the (8) (9) compilations ofVKelley and Wicks and Block . The hydroxide, Co(0H)2 has not been considered in this report since heat capacity data over the temperature range of interest are not available for this compound. It should be noted, however, that Co(0H) 2 is thermodynamically Stable with respect to CoO in hydrothermal systems at temperatures less than ^220°C . 2-r A number of studies of the hydrolysis of Co have been reported . Only the monomer, Co(OH) , is well established in dilute 3+ solutions (<0.01m) although polymeric hydrolysis products such as Co2(0H) and Cog(OH) g have been suggested, particularly for more concentrated cobalt solutions . The accepted value for the formation constant for the first -9 81 hydrolysis product ( 3 n ) is 10 , " ~ and the free energy of formation, and the entropy for this species, at 25°C were calculated using equation [14] and [15], respectively. G °Co(0H)+ " G 'to*+ G°H20 ~G V -R T l n 3 ^ lU] S °Co(OH.)+ =S V *+S °H 2P ~S V " AS ° where AS0 i s the change in entropy for the hydrolysis reaction and was (19) calculated from the data of Bolzan and Arvia ' . We assumed that the cbr^ie^onaervce^ (pri&cipl&coef flcientsi (see equation [41) :f or cations .also^, ap£ly;-;£o -siLml^e'litpJ^j^^^cidsqtSi such ^ali , Co{OH); •,-,.,, The^validity of;y this , , L assOTp^onlhjask&t^^ of 5releyant .data... jNo hydVrolysed 'iM| u iill5|| ? ihS i ; Ie.^v?-AisO;, ? ll ? M f reef eneirgy and:entrbpyV:.katav %M^I||ISSl|le|p3lSe|eo||#) ,fft#|k);s%4es,,: i^e ., Cozpa^and.CoO^, ''•'^^^^^^^G^s^^^W^^^W^^^-^^^ sllUlfgu&y§Sl^t|^t§the^^ considered.Je^e..^^,.^,. ^ ^ ^ - - i ^ s ^ l . ^ kiA - 6 - No entropy data are available in the literature for the anionic cobalt species, HCo02~. The entropy has been estimated using the empirical equation of Connick and Powell - : ; "I " ' ' 182.1-194.7 (|z| -0.28n); J/K-mol [16]' where Z is the ionic charge and n the number o* oxygen atoms excluding those contained in hydroxyl groups. The absolute accuracy of the data used in these calculations is difficult to 4etermine since the NBS thermodynamic data^ adjusted to yield internal consistency. ' ^have been However, the values listed are 5 such that the'experimental data from which they are derived may be recovered with'kn4 accuracy ei^vial-'to that5 ofs the original quantities. Also, the values liste'd'iorl!any-ugiyen substance satisfy all known physical and thermodynamic relationships?Jamongsvariotife-properties, and the calculated value for any thermodynamic quantity for a reaction is independent of the path chosen for the evaluation. Equation [1] shows that for solid substances the uncertainty in G°(T2) - G'dj) depends upon the accuracy of -8.° (Jf) and C°, For the solids considered in this work (i.e. Co, (2030^), the entropies and heat capacities are known to better than 1 to 2%. This uncertainty is- small, and the accuracy of CCT^) is most likely determined more by the error in G°(Ti) than by the integration over the temperature range Ti to T^. For ionic species the uncertainty in G°(T2) - G°(Tj) is determined by the validity of the Criss and Cobble correspondence principle. While no.detailed analyses of the validity of the Criss and Cobble extrapolation technique ' ; have been reported, comparison between calculated and experimental electrode '. potentials for silver-silver halide cells at" temperatures to 300°C indicates that the'integrations'are accurate to better than 5% . •i The uncertainty in solubility due to error in AG° can be determined using equation [12]. For an error in AG° of + 12.56 kJ/mol (i.e. 3 kcal/mol) log afi is uncertain to + 1, i.e. an order of magnitude. This latter figure is a reasonable estimate of accuracy for the solubilities calculated in this - 7 - work at'25°C. However, as discussed in the previous paragraph, the integration of AG° over the temperature range of interest is accurate to a few percent. Hence, that uncertainty in the variation of log a , -- - . g with temperature will also be of,the order of a few percent. Free energies of the various species considered above have been calculated to 300°C using equations [1] and [3] and ar*- listed in Appendix I. Also listed are standard free energy changes for a set of reactions which is used here to describe the interaction of cobalt with water at elevated temperatures. 4. RESULTS AND DISCUSSION 4.1 POTENT!AL-pH RELATIONSHIPS Potential-pH relationships for the cobalt-water system at 25 and 300°C are plotted in Figures 1 and 2, respectively. The equilibrium relationships are plotted for ionic activities and gas partial pressures equal to 10~ and 0.101325 MN/m2 (i.e. 1 atm). These values are in the range of interest for practical systems, e.g. water—cooled nuclear reactors. The diagrams identify three regions'of corrosion behavior for cobalt metal in aqueous systems. The immune region corresponds to the conditiors wherein cobalt metal is thermodynamicallystable, and is- bounded , by reactions 13-1, lO^I and 15-1 . Under these conditions oxidation of cobalt to form Co" , CoO and'HCo02' is thermodynamically impossible. (The passiveregions' correspond to areas of stability of the solid oxidation products, CoO and C03O4, The theoretical regions of corrosionoccur under conditions, of thermodynamic stability of the ions, Co and HCo0 2 . U n d e r these conditions solid oxidation products (e,g. CoO and Co30^) are not stable. 13-1 designates reaction.13, Appendix I. The Roman numerals are omitted in Figures 1 and 2. - 8 - However, these oxides may exist as metastable products in these regions at potentials more anodic than the equilibrium values determined by extrapolation of reactions 10-1 and 12-1 into the theoretical regions of corrosion. Whether or not passivation of ttie metal by a mefcastab'le oxide (or hydroxide) actually occurs in practice is determined by the kinetics of the system and cannot be inferred from the present data. Temperature is seen to have a marked effect on the potential-pH relationships for the cobalt-water system. The principal effect of temperature is the shift of the equilibrium relationships to lower pH T values and potentials and results in an expanded region of corrosion in alkaline solutions. Part of the shift to lower pH T values arises from the temperature varistion of K —2 as illustrated by the pEL values for a 10 designated (a) in Figures 1 and.2. mol/kg hydroxide solution However,""the1-data-show that reaction 6-1 shifts to lower pH_ values with temperature than can be accounted for by variation of K alone. This observation is consistent with the more favourable formation of HCo02 from CoO at high temperatures. Similar arguments can be used in discussing the effect of temperature on the formation of HC0O2 (i.e. pH_ _2 from cobalt metal. Thus, in a 10 mol/kg hydroxide solution = (a) ) the equilibrium potential for reaction 15-1 at 25°C is -0.58V. At 300°C, however, the equilibrium potential is shifted to -1.07V, i.e. the formation of HG0O2 from cobalt metal becomes thermodynamically easier with increasing temperature. In acid solutions the anodic process in the corrosion of cobalt 2+ is the formation of Co , i.e. reaction 13-1. The equilibrium potential for this reaction at 25°C and for an activity of Co equal to 10 is -0.46V. At 300°C the potential is more negative(-0.61V), although the. shift is not nearly as large as for the-equilibrium between HCoOg- and cobalt metal. Thus, cathodic protection of cobalt metal in both rcid and'alkaline systems becomes thermodynamically more difficult with increasing temperature and especially so for alkalir-e systems. The principal use of potential-pH diagrams lies in rationalizing metallic corrosion with known chemical reactions. Tha electrochemical theory of metallic corrosion postulates simultaneous anodic and cathodic reactions - 9 - occurring at the metal surface. On open-circuit the anodic and cathodic partial currents are equal and the metal adopts a potential (E corrosion potential) which satisfies this condition. , the Electrochemical theory shows that E v_. lies between, the equilibrium potentials for the anodic (E°) and cathodic (E°) processes and is closest to the equilibrium potential of the reaction with the higher exchange current density. Since the overall corrosion reaction is thermodynamically possible only if the equilibrium reduction potential for the anodic process is more negative than that for the cathodic reaction, then the corrosion potential must satisfy the following inequality: E <E l corr < EC ™ In hydrogen.,.rich systems (e.g. at 0.1 MN/m2 (i»l atm) partial pressure of H2) the cathodic partial reaction in the corrosion of cobalt is the evolution of hydrogen: 2H + + 2e~ = H2 [18] The equilibrium condition for the above reaction in Figures 1 and 2. is represented by reaction 19 At 25°C (Figure 1) inequality [17] is satisfied only at pH < 7.5. At higher pH values none of the reactions considered here can act as anodic processes under the conditions stated and cobalt will not corrode to produce any of the oxidation products considered. cobalt can corrode tojfonn Co At pH < 7.5, however, and the corrosion potential will lie within the region defined^by, reactions 13-1* and 19-1. At 300°C corrosion is also possible in alkaline solutions, and E __ will have a value within the region r • •-••::. . . - - • . . •.-•. - . corr defined by reactions 15-1 and 19-1. The increased thermodynamic tendency for Co to corrode in alkaline systems at elevated temperatures is a further manifestation of the increased stability of HC0O2 . In oxygen rich systems the reduction of oxygen: 0 2 + AH + + 4e~ = 2H2O - 10 - can act as the cathodic reaction in the overall corrosion process and the equilibrium potential' for- therreaction-— is given, as ret. .ion 20 in Figures 1 and 2 f P O 2 = O.i lOf/m? 'frlatm)j corrosion of cobalt to produce. Co 2+ . The data show that + , Go(OH) , CoO and HCo02" is possible at both 25 ar.d 30Q°C. Also, oxidation of Cob to 00364 is possible under the conditions stated and corrosion films formed on cobalt metal in oxygen rich systems will likely contain both CoO and 4.2 SOLUBILITY The solubilities of Co and CoO as a function of pH T at temperatures to 300°C and at a partial pressure of hydrogen of 0.1 MN/m2'^ 1 atm) are plotted in Figures 3 and 4, respectively. In both cases the solubility passes through a minimum as a function of pH . To the left of the minimum 2+ + the predominant soluble species are the cations Co and Co(OH) whereas to the right the anion HCo02~ dominates. The contributions that these ions moke to the solubility of CoO at 25°C and 300°C are plotted in Figure 5. The principal influence of temperature is to shift the equilibrium concentrations of the various ions to lower pH values. The shift is much greater than can be accounted for by the variation of K and indicates that the ion HCo0 2 becomes increasingly stable with temperature'. This is well illustrated by evaluating the ratio [ HCo02~ ] / ([Co2+] + [Co(OH)+]) for CoO in a hydroxide —•'3 ' ~ ~" solution (say 10 mol/kg) at the two temperatures nf interest. is found to be 0.91 at 25°C, but increases to 2500 at 300°C. The ratio At all temperatures to 300°C and at 0.1MN/m?- (^ 1 atm) partial pressure of l.ydrogen the data plotted in Figures 3 and 4 show that the solubility of cobalt metal is less than that of CoO. Thus, under these conditions cobalt metal is thennodynamically stable and the conversion of CoO to Co is a spontaneous process. This may occur by direct solid state reduction or,by dissolution/electrocrystallization processes. However, the solubility of Co is dependent on the pressure of hydrogen in the system (Figure 6 ) , since the overall dissolution reaction involves a change in oxidation state - 11 - of cobalt from 0 to +2. On the other hand, the dissolution of CoO to form Co(II) ions in solution dees not involve a change in oxidation state and the solubility of this oxide will be independent of the pressure of hydrogen in the "system. Equation [12] shows that the dependence of solubility on hydrogen pressure is determined by the coefficient (y/26), which, for the 2+ + — dissolution of Co to produce Co ,. Co (OH) and HC0O2 , is numerically equal to -1.0. Thus, the solubility of cobalt decreases by one order of magnitude for every order of magnitude increase in the pressure of hydrogen in the system. The hydrogen pressure at which the solubility of Co is equal to that of CoO defines the condition for equilibrium between these two solids. * Q7 The equilibrium partial pressures of hydrogen at 25°C and 300°C are 10°' 4 ft ? 2 and 10 " N/m respectively, as shown by the intersections of the solubility / lpg.-p_ lines for Co and CoO in Figure 6. At hydrogen pressures greater than these values ....cobalt..metal is stable but at lower pressures the oxide is thermodynamically stable. The concentration of hydrogen In the heat transport systems of CANDU PHW's is normally maintained at 4.5 x 10~ mol/kg OvLOcckg" ) . This concentration corresponds to partial pressures of 10 ' and 10 " N/m 25 and 300°C, respectively at . Therefore, at 25°C, the partial pressure of hydrogen in the system (p ) is greater than the equilibrium partial pressure (p ) for the C0/C0O reaction a-d cobalt metal is the thermodynamically stable solid. At 300°C, however, p form CoO. At. 237°C p between.Co agd Cop. = p < p and cobalt metal will oxidize to which corresponds to a state of equilibrium It is clear from the above discussion that the chemical i-denti-ty of: cobalt^ ,(i.e. metal, or oxide) in a PHW reactor can be affected by Varying .both the. temperature and hydrogen pressure in the system. This may have important implications concerning the movement of 60 Co in PHW reactor heat transport systems and is discussed in detail elsewhere The pH values at which minimum solubility occurs for cobalt and cobalt oxide are plotted as a function of temperature in Figure 7. These data show that the minimum solubility is shifted to lower pTL values with increasing temperature. The pH T values adopted by ib and 10 mol/kg 6 hydroxide solutions (i.e. pH 11 and 10 at ?.5 C) are also plotted in Figure 7 assuming that changes in pH with temperature can be attributed to K^ alone. - 12 - The plots demonstrate that the pH of minimum solubility decreases more rapidly with temperature than does K . This is consistent with the increased stability of the anion, HCo02~, at the higher temperatures as discussed previously. The data predict that miiiimi'-ra solubility of Co and CoO at 300°C occurs at pH T - 6.6. This pH corresponds to a 25°C value of ^9.6, close to the value maintained in CANDU PHW's. 60 Thus, if the transport of Co in PHW heat transport systems is related to the solubility of Co and CoO the problem may be minimized by maintaining the coolant at The solubility of Co and CoO in various hydroxide solution? at temperatures to 300°C and at 0.1 MN/m2 (^ 1 atm) partial pressure of hydrogen are plotted in Figures 8 and 9, respectively. concentrations represent PH25 values of 12(10 The hydroxide mol/kg OH ) to 9(10 which are in the range of interest for PHW reactor operation. mol/kg OH ) The data plotted in Figure 8 for cobalt metal show that except in the least alkaline solution the solubility is predicted to increase over the entire temperature range. In 10 mol/kg hydroxide solution, however, the solubility passes through a maximum at 1"v200°C. Thus, transport by differential sbluTbiiity at 200°C < T < 300°C can occur from the hot to the cold regions at pH2'5 > 10 and in the reverse direction at pH25 = 9. -3 Figure 9 show that at T < 250"C, and in 10 The data for GoO plotted in •• solutions, the solubility increases with temperature. 10 -2 mol/fcg and 10 • mol/kg hydroxide In 10 mol/kg and mol/kg hydroxide solutions, however, the solubility decreasesover this temperature range and continues to decrease in the 10 solution for temperatures to 300 °C. In the 10 -10 mol/kg hydroxide mol/kg hydroxide " solutions at 25Q°C < T < 300°C the solubility increases with temperature. Thus, in the temperature range 250-300°C, transport by differential solubility can occur as described above for cobalt metal, i.e. from the hot to the cold region at p^s** 10 and in the reverse direction at pH25 = 9. Few experimental measurements of the solubility of Co and CoO in hydrothermal systems have been reported. (22} However, some data have been 1 -' / • ' > recently obtained by Tewariv 'for the solubility of CoO in hydroxide solutions at temperatures to 300°C. These experimental results show that -it at pH25 = 10 (i.e. 10 — • „ mol/kg OH ) the solubility decreases with increasing temperature which is in qualitative agreement with the calculated solubility behaviour reported in this study. - 13 - 5. SUMMARY AND CONCLUSIONS (1) Potential-pH relationships for the cobalt-water system at elevated temperatures (25°C to 300°C) and solubilities of Co and CoO as a function of pH_ over the same temperature range have been calculated by integrating free energy functions for the various components of the system. (2) The equilibrium partial pressures for the reduction of CoO to Co are calculated to be 10°* S7 atm and lo"*"82 N/m2 at 25°C and 300°C, respectively. These data show that if the concentration of hydrogen in the —if system is maintained at 4.5 x 10 _X mol/kg (VLOecKg ) then cobalt metal is thermodynamically stable at T<237°C but CoO is stable at higher temperatures. (3) The solubility of Co and Cob passes through a minimum as a function of pH T at temperatures to 300°C. The minimum solubility occurs at pH = 11. and 6.-6 at 25 °C and 300°C respectively, i.e. the pH^, at which the minimum occurs shifts to lower values with increasing temperature. The shift is greater than can be accounted for by variation of K w alone and is consistent with increased stability of the anion, HC0O2 , at elevated temperatures. (4) In the temperatur? range 250°C to 300°C, transport of cobalt via differential solubility at pH^s > 10 can occur from the hotter to the colder regions of a hydrothermal system. At pH£5 = 9 the calculations predict that transport occurs in the reverse direction, i.e. from the colder to the hotter regions. - 14 - 6. REFERENCES !. Herbert E. Townsend, Jr., PotenUal-pB diagrams at Elevated Temperature for the System Iron-Water, Corrosion'Science, 10_: 343-58 (19- ^ • 2. D. Lewis, Theoretical Studies of Aqueous Systems Above 25°C. 1. Funcamental Concepts fgr Equilibrium Diagrams and Some General Features of the Water System. Aktiebolaget Atomenergie, Sweden, Report AE-431 (1971). : , 3. D. Lewis, The Theoretical Studies of Aqueous Systems Above 25°C. 2. The iron-Water System, Aktiebdlaget Atomenergie, Report AE-432 (1971). 4. R . G . Robins, The Application of Potential-pH Diagrams to the Prediction of Reactions in Pressure Hydrothermal Processes. U.K. Ministry of Technolopy, W.S.L. Report LR80(MST) (1968). 5. R . L . Cowan and R.W. Staehle, The Thermodynamics and Electrode Kinstic Behaviour of Nickel in Acid Solution in the- Temperature Range 25° to 300°C, Journal of Electrochemical Society, 557: 118-68 (1971). 6. D.D. Macdonald, G.R. Shiermari and P. 'Butler, The Thermodynamics* of Mptal-Water Systems at Elevated Temperatures. 1. The Water and Copper-Water System, Atomic Energy of Canada Limited, AECL4136 (1972). 7. D.D. Macdonald, G.R. Shierman and P. Butler, The Thermodyn-->mics of Metal-Water Systems at Elevated Temperatures. 2. Iron-Water System. Atomic Energy of Canada Limited, AECL-4137 (1972).. 8. 9. 10. ' ' K.TC. Ke'lley,' Contributions to the Data on Theoretical Metallurgy. -XITI., Mgh Temperature. Beat-content, - Beat-capacity, and Entropy Data for the Elements and Inorganic Compo-md3 Washington, U.S, Department of Interior, Bureau of Mines, Bulletin 584 (I960). Charles E. Wicks and F.E. Block, Thermodynamic Properties of 65 Elements: Their Oxides, Balides, Carbides, and Nitrides, Washington, U.S. Department of Interior, Bureau of Mines, Bulletin 605 (1963) . D.D. Macdonald and P. Butler, The Thermodynamics of the AluminumWater System at Elevated Temperatures, accepted for publication in Corrosion Science. - 15 - 11. • Cecil M. Criss and J.W. Cobble, The Thermodynamic Properties of High Temperature Aqueous Solutions. V. The Calculation of Ionic \:.Heqt Capacities up to 200°. Entropies and Heat Capacities Above 200°, Journal of the American Chemical Society, J36_: 5390-3 (1964). 12. Cecil M. Criss and J.W. Cobble, The Thermodynamia Properties of High Temperature Aqueous Solutions. IV. Entropies of the Ions up to 200° and the Correspondence Principle3 Journal of the American Chemical Society, 86_: 5385-90 (1964). 13. J.W. Cobble, The Thermodynamia Properties of High Temperature Aqueous Solutions. VI. Applications of Efitropy Correspondence to Thermodynamics and Kinetics, Journal of the American Chemical Society, 86_: 5394-5401 (1964). 14. Donald D. Wagman, Selected Values of chemical Thermodynamic Properties, Washington, U.S. Department of Commerce, National Bureau of Standards Technical Note 270-4 (1969). 15. ] Donaljd^i*Wagman j Selected Values of Chemical Thermodynamic ; Properties,Washington, U.S. Department of Commerce, National Bureau of -Standards Technical Note 270-3 (1968). F 16. - Ach&aza,rPorrOs'ion of Metal Surfaces Partially Immersed in , SaZt'SSSutions. ^Corrosion on the Edge of Immersion, Rendiconti Del Seminario Delia Facolta Di Scienze Delia Universita Di Cagliari* 29': 46-^51 (1959). , M.P:. Collados, F. Brito and R. Diaz Cadavieco, Hydrolysis of ^Cobalt (II) in 1.5M(Ba, Co) (CIO.) „ at 25°, An. Real. Soc. Esi Fis. Quim., Ser. B, 63.: 7-8, 834-5 (1967). 17. 18. , 19. J. Shankar and B.C. de Souza, Hydrolysis of Co and Ni Ions, Australian Journal of Chemistry, 16_: 1119-22 (1963). , Jorge A. Bolzan and A.J. Arvia, Hydrolytic Equilibriums of ' Metallic Ions. I. The Hydrolysis of Co(II) Ion in Na ClO^ Solution, Electrochimica Acta, r7_: 589-99 J1962). 20. Robert E. Connick and Richard E. Powell, Ths Entropy of Aqueous Xoy-anions, Journal of Chemical Physics, 21: 2206-7 (1953). 21. D'.D. Macdonald'and T.E. Rummery, The Thermodynamics of Metal Oxides in Water-cooled Nuclear Reactors, AECL-4140 (1972). 22. . ~ ,P.H. ^Tewari, Private Communication. , •• •••,- - 16 - 2.0- -2.0 ' PHT FIGURE 1:. POTENTIAL-pH DIAGRAM FOR THE COBALT-WATER SYSTEM AT 25°C. IONIC 6ACTIVITIES AND GAS 2 PARTIAL PRESSURES ARE EQUAL TO lO" AND 0.101325 MN/m (i.e. 1 atm) RESPECTIVELY. - 17 - FIGUREr 2: POTENTIAL^ DIAGRAM FOR THE COBALT-WATER SYSTEM AT 300°C. < IONIC eACTIVITIES AND GAS 2PARTIAL PRESSURES ARE EQUAL TO 10" AND 0:101325 MN/m (i.e. 1 attn) RESPECTIVELY. - 18 - O 23 °C • 60 °C A IOO°C • IS0°C V EOO°C T 250°C a 300°c 14 FIGURE 3 : THE INFLUENCE OF p H T ON THE CALCULATED SOLUBILITY OF COBALT AT TEMPERATURES BETWEEN 25°C AND 300°C "AND AT O . l M N / m 2 ^ 1 attn) PARTIAL PRESSURE OF HYDROGEN. - 19 - 10 10 -s o £ 1 o1 o 10 -6 101 -2 pH T 10 14 FIGURE 4 : THE INFLUENCE OF pH T ON THE CALCULATED SOLUBILITY OF COBALT OXIDE (CoO) AT TEMPERATURES BETWEEN 25°C AND 300°C. - 20 - PH T FIGURE 5: THE CONTRIBUTIONS OF VARIOUS IONS TO THE SOLUBILITY OF CoO AT 25°C (SOLID LINE).AND 300°C (DASHED LINE). - 21 - yi i 1 1 —r \ \ \ \ 10 -5 \ 00,300*0 \ \ \ 10 -6 \ _ CoO,25°C =i \ \ o \ o . O. \ 10 -7 \ V CoO, 300°C — \ \ \ 10 \ -8 ,Co,25°C \ \ , log \ PH ( N / m 2 ) FIGURE 6: THE DEPENDENCE OF THE SOLUBILITY OF Co AND CoO ON THE PRESSURE OF HYDROGEN IN A 10-" mol/kg HYDROXIDE SOLUTION AT 25°C (SOLID LINE) AND 300°C (DASHED LINE). - 22 - © PH T of minimum solubility of Co ond CoO « pH T of IO" 3 molAg OH" solution O pH T of IQ- 4 mol/kfl 200 100 OH" soiution 300 , T t°C) FIGURE 7: VARIATION OF THE pH, OF MINIMUM .SOLUBILITY OF Co AN? CoO AS A FUNCTION OF TEMPERATURE BETWEEN 25°C AND 300°C. - 23 10 - -7 10 o e o o 10.-9 10 T(9C) 300 FIGURE 8: THE. INFLUENCE OF TEMPERATURE ON THE CALCULATED,SOLUBILITY,OF Co IN HYDROXIDE SOLUTIONS'-AT O.lMN/m 2 ^ 1 atm) PARTIAL PRESSURE OF HYDROGEN. - 24 - © 0 # Q I0"5 mol/kg \b~4 mol/kg 1OFS mol/kg IO-2mol/Hg OH OH OH OH 10 100 ' T(°C) 200 300 FIGURE 9: THE 'INFLUENCE OF TEMPERATURE ON THE CALCULATED"SOLUBILITY OF CoO IN HYDROXIDE SOLUTIONS. ' - * - 25 - APPENDIX I CALCULATED THERMODYNAMIC FUNCTIONS FOR THE COBALT-WATER SYSTEM AT 2 9 8 , 3 3 3 , 3 7 3 , 4 2 3 , 4 7 3 , 5 2 3 , '-NO 573K iMlllM'i I ' SPECIES H* H2 ' 02 M2O CO '1 COO I C0304 co** COtOHl* HC002« CO*** TYPE FREE ENERGY 25C SOLUBLE ENTROPY 25C CP» il) 0,00000flE*00 0,000000E*00 0,3180«aE*02 tff0(l0000E*00 0,490030E*02 •0,566870E*09 B,16T108E*(!2 0,000CI00E*00 0,7ia000E*ei •U,5l2eB0E*05 0.126600E*CI2< .tf,i85B0BE«06 0.2490OBE*92 •0,130000E*05 •0,370000E*02 •B.563000E*09 •0.327000e*e'2 •0,S2970BE*09 0,150000E*B12 0,320»00E*09 •>0,88000«E*CI2 CASEOUS CASEOUS SOLUBLE SOL 10 SOLID SOLID SOLUBLE SOLUBLE SOLUBLE SOLUBLE CP< |2) • 0,6528WE*01 0,7i*0«0E*01 0 t 1799SBE»02 0,4740«0E*01 0,1194i)0E*02 0,3Pia4aBE*02 B',7B0I»00E»03 t»a100000E»02 B,4)3Oi)00£:*00 0,400B00E»B2 0,204000E«02 M,l7aa0BE.01 CP( ,3) ACTIVITY 0.100B0BE-05 a,120«)0BE*tf5 0,1BBB00£*01 -0,40tiBBBE*05 H,100BBBE*01 0,000B0f»E*DI« , B,a0Bkl0BE*m 0,000U00E*00 B,lBt)BBBE«01 B,40BBB0E«BS 0,1B0B00E*01 .0,572k)00E*06 B.100000E*0i, B,100B0BE.:B5 0.100000E-0S B,lB0BBBE.Iil5 U.1BB0BBE.05 TREE EMER6Y VS', TEMPERATURE .1 , 2 H* H2 3 4 02 H2O 9 ' 6 CO COQ CO3C4 CO** Cn(OH)* 7 B 9 .10 11 ,CO*** DEG KELVIN 423 298 333 373 0,«)PiBfi0aE*0(> 0|000^00E*00 0,030000E*00 0',566B7S!E*05 0,0ti000BE*00 fl,512000E*05 0,18900tlE*06 B,13BH0flE*B5 0.56380HE*05 0,829700E*05 0,320000E«05 0i'l29S00E*03 •0 I 11B991E*04 "0il72906E*04 •0iS73079E*B9 •0,263i32E*03 -B,516680E*05 •0ilB9917E*06 -0.116B42E*05 •0,552312E*05 •0i833S60E*0S 0 ( 349399E*05 B,134330E*B3 •0,240075E*04 •0 a 373717E*04 •0,588974E*05 -0,S91i44E*03 -»,522594E*05 -0,187106E*06 •0il07368E*05 • 0i5«3*12£*i)5 •0,B349B7E*0S Bi378734E*05 473 >B,790000E*02 •0i62E000E*03 «0,406064E*04 -B,576151E*04 «0,629075E*04 »0,888791E*34 •0i591927E*BS •0,603»45E*a5 •0il03BS7E*B4 , -0,152407E*04 -0i530741E*B5 •0,539636E*05 •0ilB879lE*06 •0,190683E*06 >0i986110E*04 •0,946302E*04 •0i936446E*05 «0,534B79E*05 -0,83B479E*B5 •0,82B455E*05 B,408736E*k)5 0,431860E*05 REACTIONS II KCO** 1 * KH20 -> 21 KCO** > * 2IH20 31 KCO(OU)* ) * 41 KC00 ) * 1<H* ) « KCOtOH)* -> 3<H* i * KHC002- ) KH20 -> 2<H* ) * 11HC002" ) 2CH* -> HC0$* ) * 1CH20 ) sr KC00 > • 1<H* -> i(CO(OH)* ) 61 1CC0C ) * -> KH* J • KHC002* KH20 ) - *> • 71 KC0304 ) * 6(H* ) * KH2 ) ..-.......—,> 3<C0** ) + 4IH20 81 1CC0304 ) * 3(H* ) * KH2 ) ..........-..> 3(C0(0H)* t * KH20 91 KC0304 ) * 1IH2 ) « 2(H2C ) .... 3IH* ) * i(HCQ02« ...-•> 523 573 -0il44400E**04 -0,749915E*B4 -B,116Z45E*B5 -0,6165H7E*05 .B,204467E*04 ^0iS4?203E405 «0•192767E*06 -0,99566iE*a4 .0,242B6BE*B4 •'0l'92;70i5E*0'4 •0!B04744E*05 B,44BB05E*05 •0i630796^*09 •0i^597»6t**4 •0,5593e0E*05 »0il9SB3iE*B4 •B,1B1332F.*B5 -B,543486E*05 -Bi795623E*05 0.457243E*a5 - 27 - m m m u\ «• m m m uv n tn m ti> •*• m « mv L iduiiJUiuuuuyyyuuiLuiiiiijyuy ^ S «l O^ «4«4 B M »4* m M M CO9 41 »i»i«m ro ai o> a o s s m o N « M O « - I V V m o m c\ioa r s s T torocB sesc&ca s s s a s s s s BSBtaassK nnininTin:iAinii>Vininii.*iA<eiA« inca ea aaBSis : ass(B«s»s::B^&sss U i i l U U Ul U l i U i b l Ul UI.U1 Ul UJ Ul-UI Uf Ul'ui l i l Ul r^ m to s ^ m f > m.co.is.'.Vi^ - * • • • - • n ^o ni,in st 0 J |Q q ' —-.-•—._ fQ CU m a s s s s s sa s s a a a s s-.s ssss m A m IA « m lAinm* IA in m * m * m * « a Ul U UCUf UU1 Ul UJ. UlUt UIUI Ul UlUI Ul-Ut Ul Ul Ul : -iv ,.w:*:»iB'!n»:aw*ionn*<oAtor<wirotos SBBBSS SGSSBSBBSta Q tu o o < c ••x- - x «- C O miAin m nth mm m » mm m w A in in * * a z s 5 5 , s s . S i E S S es EB ta e a s s EM ea es cp s ea -> UJ Ul U Ui-U U'UI Jil til Ul UJ U Ul Ul U UJ UJ Ul Ul Ul w ^ w A I >*#i..^tT-m,<^,'Oi'0-A?*>.'0.a.'»f .m.tt. w t ^ a sc cii ^J" fy O> iO (O A'.«4 S 9 " . ' S I V O K l : K : B i N t f t l B •< n E9 Ul T^.^'tM v4 ^f::.A|-^,AI,4>. IQ .tQ.N.vfl.nt IQ 0^..<O N ( 4 S . S S S S S:t» SS:ISS S B S S CA'S ea B B S ~l • II • ] • - ' • • • i SEE K f i S S S S S vt ra 10 w w V /"it i A »» A —. — X X cv ni A A UiUUIUtUUIUIStlUI W U bl Ul U U Ul lil 111 Ul Ul tO Dv | ^ ^S tO"^9 AI CO *O tS.IQ IO 4S^IA 10 G - r t T W r i M M r s D O I A « r>OI«4vC|i 1 1 I • 1 • 1 1 cu o ni X •c 1 1 5> n n o> < 101 *n < eTs s s KG '. • • v * * . * - i o •-•> l> u. U D X osHoe nnsot H«niHi SBBBIISBSBSSBBBBfiSVI Uf + O mmmm' ., G, BBS GK BS 9 S &SBSSt£GS(»v> uuyuubiyuyuiuuyuuuuyuy C O IV t T » v | v « o > > O t I u uyuuyuuyuuuyuuuyuyu t 4 IT Ui a. 3: ui i^ > ** -• D >• • tasGisesssasiasBbiBGfisfiSta ui or 3 A". • • iAniAiATniMninvinifliAtiAiAn««» 1 O Al X f z - 28 - r • ttJ UJ Ul Ul Ul Ul Ul UI <o to *> to * i to <o to r. cu r*. w rs w ^ CM S S S IS assa asas ea trisrn s in si in UJ Ul'ui U l Ul UJ UlUJ UI'UJ.UI'Ul'.'UI.UI- O« %O OB <O Ok « ( D « ( H no to<o in** o to o m io o« w •« in ro 10.10:10 SGQS in a in s tn s m Q. rfn 3*£*»ooe»o Ul UlUIUlUA U I U I U I l Ul U l U^ Ul UI Ul Oh IO O> in^iin S (9 (9 Qk S O O O OO O OOUOOOCV4 uuuu uuouxouuox A S I A Q l l A S in (9 x -art tn to afo tn « Lsniflosr M A M A A ^ U Ul uJ Ul Ul Ul U Ul W Ul: Ul Ul Ul AlAlAri\OA |ft||MI\T»eaM7Ol «:M WP3 « OCt rT»9 NN 1 CM oo a S SSSSSTHW bl Ul Ul UI utUl Ul Ul OD • O O r* c\l a> <o I D CM a s ssaaas in Hinxin WtfVri seas sinsvts nsin XW 1+00 +00 4- w O O • <—O O • oouooo ooooouwni <-O U X CJOO U U U O U X TX U13 19 13OO (9(9 C (9UU (9U O O O C3 O'OO O O O O O OO IH«4H Ul Ul lilUIUl Ul Ul Ul • •r*in viii\riu\ «-itn a u o u msmatni&in s 19 ea -a ca ca ea -a ta U X mstn^mtatnia ft uiuiuiuiuiuf'iaujuiui u ul ul ui ui ul ui ui uiu» N n v< « K ^ >SKtf\K » i< « « H ^ o a- ws wai&m « N S noi » N O I A S M H S S » ss (E v< P77K IV ll\\S h B* «C vtOOtAt^ClCVf (E> iO <N K O CN M >4 M IV VI K S Oh Q v4* CM * tO-1 O I HAO C f OCOV O lO ' 4 a } H A n 4 f l ins a. S.IM * rlvfri r *^ o inroscwinr a -t-t «4 r» oi p» cv r». c <oa<Oto«a • UUI Ul UlUlUt UlUJ UlUl bt tf\ w m «4tft . s K r. ^ s (."i . in c, u> r. ip u I - - . . . . - . a —~ - 29 - H f i S S S> S S S S G T I UlUI UlUI Ul Ul IU 111 Itl tiJ Ul Ul Ul UJ SOSS HrtitH I-ICJCVJ Ul U U UlUI UlUI Ui momomo nono ro o CM in ra m CM in CM U U bl U U Ul UU tn noinnna w 10 to IO 10 _M « n ss sass SQSSGSSB snsinsm Oto n n o n s in st m (9 incsin IL^WO-OWWO* CMS- IN-in CM S rirtSlS SS UlUf U4U1 Uf Ul S> w* B r i S t i omomoin oto oro o ro SSSS^HNN casts casts sssssssa maintains in <D :o ro in <o in s ins in sin s -B S & Q G B susnsnsn snsiAstnsirt i . . . . . . . . a. «iiQ'Oa>*in<*>«i UlUlUffUIUIUlUIUI •nCMin CMin cum CM «ca*s-<rava OCMOCMOCMOCM <Hm«4m«fin«4m <SOSSiSlSSB iftsiAsio sms ^& ^L. is ^o in ^o ^^ PO in Hr^Wiri S M I A N sc\iuvr» «*«H s a a s SSSSHWfiH UlUI Ul Ul Ul Ul H 9 t<S T + S Ul Ul Ul U5 Ul U l U I Ul • (D .OD O SO O* Qt Q* CK CM m CM m m m oj wo wo ro o in w* m rt in «-• Ul Ul Ul Ul Ul ul osoaosos in "O;in o in o a> a>v v n i o in to i*> to io n n n rt 6OBB SISGS ro«H to o to *-i «H«4 S S I S Q • I • t » » UIUJ U1U1 UlUf C9f4Grl «•,:*-*', o m o m.oin: oro « n « n. torn a>ro » r o o w n o i o Gtmsmsmsm s i t t s m s mism a. s cvj in r<- s. nims mr* <s n m r rl*4f4rl rt ftswiAKaf riririri X X a. a Ul a <© * * -o •* •« o a u. sssissn » insl t> 1 S N T k t » *ft» U! Ul liJ Ul Ul U» H S 4S> 119 n o toorao K<c n<c ra«. (VNNIOIDK) ra«*>. o l i o txt.toto n , fits s s. s wwni O S O S O ».<OS OOOOOOOO « •» o •*; o'.v.o. -r •*. ev; r» nt ry nt r>> M i o K o r<:« •< CM-«4 n i V< n J - n cu W4 «-« o o o:o «,« t*\-*-• tn «-* in «-* • K I. ft » i • ft U U-! U' U! Ul Ul W Uf « E fe c ft r * < ILJ UIU1 Ui »*J U3 UiUJ * + * t * » » K UJ Ui UfU. UJ U t U l U I O t OflOCO <C C^.fr . 9 T iW CMincu in ni m n t m (S. « K « & Vb^l A | « N O CM O (M O tn ** in «4 uv *i tn «* Cm Cv IS 5 . K SI 6 i A- IS IS « . IT iM «\ & in & if^ . O..-w4 ^ «» O C r l . Ul ft T4 Itj •< Ul B. x 0. H * Uf Ul Ul U U« Uf 9 S»n«N - 30 - • '•• " Ill U ' «'* * * •• KMmt-.9iA.im . U l«l bl U bl 1*1 1*1- 1*1 s s m n ntMH ca. ••> Cl 4 • * • * * < * • * ; < © K\-«> ss si «s <s » a' ea IA s n s i n s ifi sa vv *0 CO O. wttO « CD • * IO « CO ss rifissaifis ss vis s s as a u i u •• ui ui ui ui u b i y u i . asoiaftnHa in*< to ess an c& •» X - a. tsi • CM m- . uvr^ «t4|AO«n com SB • • UU o u O m o «w«w<-«v*« «4f<SSSSBS • • • • • • • * ; r XUbltilU U U U U - 31 - eain s n i s i n s i n t t s s s w «-rcucu - • * .* , t , « • • • tnra LU Ul UJ Ul lit UJ 1*1 UJ . Ul Ul Ul Ut U Ul U Ul XXXXXXXXXXXXXX 0.0-iL.a.a.a.iL.iLa.ik.aLa.a.a. Ul Ul til UJ l*i Ul 1*1 M' 1 s in »oiAAAQio x -- Q. * * K I 4>cO v t r o « CO ««**in«in« <SIOSlAQnBIA ienwiyW V VV * •* X Ctf + * * o oo - o o • o o • + + 61 StCIS S S B S o o o o oooooaoocj-f uuuuu uuuxuuuox tnainsinsma SSSBS8S a ) a 4 o o •a w mn o- fO »o,*o sssBinas:SSB: BnasS * to IO » » o ni *o ~*o*o to <o « « ro to IO M a> >WiW W «;*••© « « -t r* • « ** 9 - - -ii,^--^'-,j.^*^»7.».i- . a o o • o o w O O O • - •'••' - T W * - --."O v • O U1U) tO 4> "''•-• - - 1 - - ••'" "J-- " • • •• O O C O O * •• • # • • • • * - • • Ul Ul U^ Ul UJ Ul i** 1*1 Ul 1J Ul'ljj'Ul Ul UI til xcuai t n s s s s s s s s ta s s s rotn -• «>•*:•*« 4 s v>«in s in s in x AIx eu ^ +o o • oo « wo o + -* o a OOOOOOOOOOOCJCMOl UUIUUUUUUUUIII sin x - - riWWH Hrir4H ooooooooooaoao S fB S S «-* W .,-• a i •. • • uWAiuiufui • • *-O OD I I a t • I • • > • • • > • O O O O O O U UILU UJ UJ Ui UJ Ul UlUl lii.LJ Ul UI *.*«••» i n * i n * <o u u u u u nnnaxsiomasmn in mso . • ; , . jT;Soi:iHN>««SN OU U *4 H S N W S Gl O S S B « Q D O O'O O..C> <KO» O»1:iO|.WvWiW.W fO;* * ' O r O : » J J J J J J CKCK o^rocvio^ ro ro »:« «.<a n rt • *ii.v.--a .-^ - ' - ^ ^ • ^ • ^ L # r * _ ^ / »-* ^rf » - • o:" ; ' "ta€v motto en too* 4 4 4 4 4 4 4 - S - V 4 4 4 4 * # • # • • • • # U1UJ UJUIUJ Ul UJ Ul Ul Ui U UJtiiUJUlUl lilUIUIUl rt w w N N e 's? m »«it)t>'S'nnic « r*« OD IS a>in w <»t*> o »r*. « a i s : n o s N K S H « S vi CC & v 1 * « 9 O ( V I T a M B O ^ (« O< O« fO (>• IE ^rHH{Vin >• • • _ • • • M I 9 S S I^9 S ^ S • • i - r% t - H • •O• t * • | S S S G . & G S r 9 5 O S B B 5 n n n n n n tUiUIUIUIUfUlUlUIUIUIUIUCUtUl to &.in a, UMS. in c tr x------*- O_ _ X• - 32 - 9 <O V *>*» *>»••# N t u n 00*900 n<o Q s s ; sv w w M w *iv««l«fS SS61 » * » • • • • • l,i t.t JJ u JJ 1*11*1 Ul * « > • • • •• hlUUUUUUU ia minim ram 4 ) 0 * <O. O> <OOk CMC* CM O* E U » 4 * • t •t uuuutuu CK n n » wo r Nn o> « » oc* «a* -o nan«insns r-tMr-oir^ wr-(M mminmirininin o c * otmaoQ ni m i y r o ©> cu o mtxoo* ca»<o otuoMann ni » OVOVO>" O»0> O* Oh « fM CM CM « N N N sins Asm am s m smsin rtS O ••> riN • c » p• « uria ut u tu u « » «> a « s SSfifiBS ui uiuruuiui m ut ui ui ul ui ui ui S*Nfttl^»NM c a oo CM ( U N I O N ID SSSQSSSS SSBSSS v% BI icv s uvea tft a a. <g io'in co s » i n «o ans ins 1 ' ' x Vl*rtW tn s ins ins - - - - - - a. s to uia> SfO s sa ss U U U U U U1UIUJ UUIIilUUMUU <mNNNNNNN - s s» S S S B si a cuniN N N N ni« S BBSS I O B n s n s IO is M IO O H> « n 4 O 4 - w*o w 4 * x * * < * ,SS>«S«SIS6.«S> s m ts •> s. m s in sins WBn CO CU CD CU CO CM CD CM O CM CM CM W v f CM SSSSSSG6 BGSSBS Binsmcs.msm o. at CM i n r*. «i CM in r*. X X Q. a. s n s i t s n sin ntv <ISS SrlrlNM Ul Ul Uf Ul t i l Ul UX Ul ^^ O* ^^ ^K ^K Q( ^h O> IO ^S IO ^) EO ^3 fQ 1^ UIUJUJ UIUIUI • « o ' « on <o co mnmmtnto ovcuovni o CM * • * • • : » - : » . : . ' « ' * M1MCU M A I N ( U M in •0 scMin^smints SS SSWHriH I o main a u \ s ins cusrs tn ais •«4 « *« * CK * OW vt S S S S >« W (V * • * sa ap p IIT TII Ub/UUUUUU ««ss;»» 'tt'Ot.O.'.'O'iO OVOVOV ni ni m n lu fM CM ra ^SSSBQS o* oxo 'til UJ U l Ul UI Ul Ul Ul r s rois n s n i a n hi U Ul U Ul kl UIUI v4i^ *4 r^ ni Kcuffs i *» m *^' m > io o • X o or • CM O O 1BSSS SS en s tft s m s ; V) Ul 1*1 Ul Ul Ul Ul Ul LJ t«.«-frs*-lfSCMIs.CM <tnNtn KIOMAN tki UJ UuiltJ Ul lit Ul ^ n csncin s to s » o »o ; n i CM CM CM M M N CM CM CMCVCM • * nr o u UUIUIUIUUI -< cu ni to r^ eo in in in in -a »<a me. r\fstn s i o - 33 - • B UU »<o •OS U UIUILJ UiUI U U wwwawo AT» Okas O>CM SiCfi smsutBin sm sin «O) *4W 4" CM • B ui ui uiui ui ui ui ui •COO sro curs. •w-cn I9O> nico s s s s t s s s ta sea ins nsins ins in CM s s Ub) US UI UIUI Li Ui UIUI ins CM >v CM tQ "O V •Hlvl T-ISSSSS SS r- CM OP • * o> t o CO CM SG in ro s s ACTIONS amsro csn sw UJU1 ui o o* zs.tr, nir><- IQ O CM a> a a: u. i lOttlfOfU «C ** C\l T4 Uf UI UI UI UI UI UJUJ ^ W r t r t *CM <>W a in s ui > <<i ro .,& IS o o u r*.cM e. E> 'S B> • • T 4 v4 rr SOLI CD CM •Q -rl H H • *^w<mcMisi - 34 - '- " ! - * ^ « i » ' l *.ft"'t» * • '•f ti,i i t i t^] ^ ^ | f .11.» r i f f UlUI co «r cms ^t'*4Q ^9 flff t^ CO* ^^ CO C9 * - I S •"**'**• 4 t"* ! 0 t* "HO f -0- bs *© to en co co m rararo to l o n r o r a KKKNNNKK •" Ob t D CO CO CO CD CC CO 0>"(M » n t O Ol Ox CM SSSSS Ut'lil til Ui Wta*lii WfaJ1*1Ui 1*1 111 Ul KV n « (V: N N S i«^l a N«N(V UliitUt UI li» 1*1 Ul UI voro^o r? « r> <o n ia CD ta co Gt co a co r t K r t eo co> « Wt CD co tcat<\ SI r4 Oh i n nv-r -CO ( D CO^QO (*O.(D CO CO ^C i M »*N O* « » • « • > < • • • * ,•••«••«• "- X-nt • • • OOO :OO'f OO • • • "is ia sis ta s sea ranno nro * ^*o • • + OOO O OODOUOOON * UUUUUU U U X U O O D I if* c j u\;ra tA aa m c a D O O O O O O O O O O OO O ins xsn I U bl U iZl Ul \ — o o • •** o OUOODU « « "O T X O t> T. H S S B ri 1*1 IMI b/util www bJ Ul UI uJUl U l UlUi eo«o co coco ep to « row to ton O O O OO D B i B S ' 8 B t u t 7387 7387 7387 s s a ta w*S-s S s * 4 * * H S a s a s s n s s s a a a aA s - • t • — • - ; -«;:-••---?•---"-••• - - - - XNN INSSBI -000*00 : SCO , •- ft • - UlLJ s ID IS. <o w m (Vi -a .so s s K S sins tn<s ITGIT a. si csimt*> s OitfV tv (Sir. i •srcgrm 1 WWW •-•• - o_ ts cu CMS p>irico a n m O u. o Ul Ul Ul Ul Ul Ul Ul lit O O C O O O U Ul UJ Ul Ui hi U I*1 It' *tl It* t** Ul I t CM ut o o u n N w»oranKIV r- W n #3 s'ssssassst Ul Ul Ul UIUI Ul bl Ul U M tn z o CO CM « • ft » UlUI -« cam 4»M •wove c G cu n « n i vi «-•«-« iftta in ta in tatn rONVKONV ' a..1^ tv-* IN. niKtvtn m toco to r^ea CM i n + *ftftftft• B U t i U t b l U l l i ' UlUI vfS fiGB HTHN n nnnronnn f > t i v f f t M> nnvtnnnnto S>«VK tfVS ITtfE IT a c c CD « »CM . »TV K M* Gl K-. K IT. IS W t>ir\ IftV *w -- sea - 35 - o» r*. v CM «-i ro S St S O a IS » m • »* * blbl Ul bl bl *•' s « ava v ma moms H S WB» riS u\o> rin 't n o m cir> n CMT r*. n>N*NO> KJKua 5>-r«W«-t.r4 • • • • • • I • UUbl blblblUtbl NSNsNSNS ft»«r blblblblblbfUhl CM CM CM raiora NAini •or**) e^<ir»-«ois, fonifli Nanimcu s es s GiSS 5 S E 1 S B & in s i fstfvea i p B t n s i n N ni » ID <•) d 4 co s s eat S « « T « « 4 W blblUI b l h l b l b i b l CM CM CM CM CM CM CM CM (MtVCMCMCMCMMCM eMCUCMCUCMCMCMCM cunicvcucwairvim rtwwnnwnn n» a a a ts a o «••-..---- n s n KrofianK n a n s « <aIOa •O M *O CM •« Ol « « futMcuof^a *o to n i^ « CM f*. A cu S N i d nis WrialHSBBS BBBBEBB'* blblblUIUIUblbl asm s s a bl bl bl bfa i* bl CM CM f M CM CM t U CM CM a s o insin Binsins a.s*om anatomeo tftsiAanss bl b l U U I b l bl S O G M B WO B W CM-OCM « ( M « N « sasSBBBS x a a a ea a s « *• •• • NNniNMNMN T* W <O O "-* * •*>•» Ul U bl bJ 1&I bl bf bl blbl Ul bl bl *•' • • ta • • s* «• a am amtsn <}4 9 blhlblblblldblbl omoraanaw d> <o ay >o a> <o v « CM CM CM niNniaini CMCMCU c s. a i N t N » IW Nri tats B s a a m tarn a m a aa a mam am a rirlrlrl ss s s wHnni UI Ul IU lil Ul ea «• a v a S Si S S««v4«-fTi mta i n s in W t t l u U U UIWU Ul biiil Will r*Gtf*» Q N 9 N S •4 CO « CO « f f l « ( D « AINNOINMNN r»*r rs. * ^ ^ ^ . » 4>t* 4> N O N 4 3 N a; OJ a> cu m run: w UlbfUlUfuJulblUl nicuoKuntcvoicM CMCMCMCVCMCMCMCM CM cu CM tvcucMni CM nnronnnnn (Ononm IO TO n f«>oa « D « B < O CM cv CM cu m m ni M » B » K M » WS iQsnsraaraa «tU<O (M "O W -O CM !*3 E O S B S S E B « R ts c? a ta ts s. tne1 KiBrtsiA CSVMS in is in is m i ••« • - - - a. stum fscumr*- sm&nsmsin a aaa HHC •» * • B I • I bl bl bf Ul bl bf IJ saastwri 4 I i ft • • I K UfUlblbfUblblbl CM CU CM CM CM CMCM CM (M CM CM CM CM CMCM CM fM CM CM CM CU CMCM CM CM CM CU CM CM A t CM CM nnn toton B CU o o X ion O O msmsns »- mstnamama :cj CM CM a m o cu cu i M n & n n n n n CM « SSBBS5 »- m a m >• • » I Bt • bJ bl bt b> kl bl *4W«H r l Q S S S • B • > •/<-• »'- • bl bl US b l b* bl bl Ul nto to a n a »<& oa> « OD«tfi« o CMCM CM CMCM M N I M s n s i n a n ta n -~ srois n s n c c n CM« CM *O CM-O C M * amsinsmsiA v i a S K «4v«CMCM * • • B• • . • b) bl bl U bl bl bl bl a . s CM -ir »^ » ft 4 CM, « • •••• * CUOICUCUtUCMCUJCU cucufu N n i ^ n i A i CMCUCMCMCMCMtMCM fO fO tO 1*1 f 3 1O IO fO z o O» >O * r l f r • > • if.i,. UUbjUUUU U nnsnanon- s m o in at <a T< S K B S (B . * «« • » « ,'UUUUIilU Ot Ot <D N P i V . —'U» Ut •wn ao« MM'. ns • « « * - • ».;»:;»-;•;,•( b l ul W W Ul bf UMl 1 S^VftMT ^ odtlintsii'l |s*t*».a0.*Q'«4 S . * 4 B eo m is. IV in » m c cT^ asetatas&s an «» a n a * s in a H* twi?*»><n*> MS ?? Ul b{ «»<o » * •••O.tfVN.S'O • • » •••»-:** •• Ul Ul U bl Ijl U>U U~ a w » •!>,;«- - — «S s n • » » cao>u w w w « «»' ins a»^ «an«*Bits a. a win • ss •« , • » : ' nren na « * < • » • « « : * Ul 1>I ' ' • Ul laf 1*1 U 1*1 **f M UJ • • <o nnns>iii<lli E'K n sin - ssKsssas sn&asnstt . -« tf^^t T. » - . • • - • . » - » , • • - HSnP KSHAk z o ss t I ooo . o •« ) « • • • • • • « «>iT<r> a n n s n CMCW X * • * . »* « S *4B.W as x a. ssssssss ins V 3 ASASHtSAB «4«« V «4 SS « • Uu P - O C u v4 «4 v4 NMtm«4ri*l •ISSSBBSS * « * • * » » * < IAI !•! W 1*1 t«l U bl bl •* 8 W ^ *B G) BB l ^tfl^ Qi "#• n^ *- nnntMRtit '* a to S n<4 o » *"Q - 37 - S . H «fiBSHH«4*f N *.« • • » • • » uuuuyuuy » CK o>» » »o> o ltl III Ui Ul Ul U Ui Ul BOM CO »'(OI*> CO tO O.B.RSSR R.S rm -m m K I C K - I O N co r*» a. a. 0.0.0-0-0.0.0.0. aOLO. o. i GISSI a in av in in in tn in tn h*i*i u ur ui ui ui K S k t a n a p } *> s main sins in •• » s n <o w n in o f»o o » «a »m s o *» o ra a* rinnn 4»-wni a to urn ra tL ««ro w CM «* oc> co 10- <a • • • a «oftio <n a. aaaa HHHH rirliirl * »0 NKMNCVtv QQQSiliifllN UltiiblUIUIUlUIUJ uiuruiut uiutui ui nco rote to d n a ^ m » me* m c*in o> OSSSSSQS mm in tn in in it\ m <e «r * • « • * i ftj • • + O O O \ O O # 0 O • ^ -* to n n o (o*» • •*o • • • O O OO O O O O U O O O C M « s^ i s CB a ^& ^2 c&"^& uuuuuuuuxuuuox o o op oooioooooo o " " " • " " IJ x ••.••.---- ins cnstmsma o. s to m o» a ro in <a ins m a m s in ts» a. sto'mco aram :n -.a s.s^a.«i*4niG4 «'iii iif ul ui ui us ui ui s s . s a s n t-i «4 ul ur ui ui ui ui ui ui ia 4 _ _ _ „ _ _ _ . _ _ _ _ _ J * \ * ^t1 l ^ UJ Ul li^ UI Ul t^ UJ U W U) Ul m t-w *4 •*rt»o -o s a •,;•*••*• •»•«! c o m eu a us a s INN zcvsssa ooo*oo .= . . . ' ou u o o o * • # « O>. O^' O* <* 9> O O» » ••--•oo * . w o " CO W lOfO tO(0 (O (O •<i~- in •< o*:movin o»m ©• m nvtcM-nTO*-i CM 1-1 «- E s is ca s i& s in uv-in in in in in in O I I UO X m CM ii « in s ra CO N f f l N OJts. CO Iv. •H m *4 in vi m «-* m Sssscssn X« oo * oo : O O UO O XO x ams.m - - - -isms . - -m - s,tn & ifiE; in ts m .X« ••—oo OOOOOOMN U UUUOI X X X O- X a. a. HfOS > J J J J J JWHH»KH« m ra tti UIUIUIU1 UIUIUI Ul bii!lllUIUI uu(9dO(5inin»«ir.» o o o oo onjtunirivf'v H •<-*»« o ^ * o * • * > •i • • IRS n en mm n ccraID o n A i n i p ino»mo^ X O ff-.cDiK.oo t*. cor* co m * i i A H m«4inw a s a a a eaeaea a ii o : ~ O - """• x • -caa Si (M rlfiT4rtS(S S «iK rtHC W G _taasssa(9ssstS) so s s s s a « « * * • • • • * « « r * « « a+ * * • • • * — • r4v1 H UiUI Ul UIUI Ul UJ Iii Ul U U b i lal Ui Ul Ul Ul Ul UJ Ul a a sssa S S B H «-ICU « « * • • * * • UJ Ui UliUI US U) bf U n«• n r~ r. f . r-r~ K t^ rin in in tn m m in in « • • • g >* • U ' u u y ui ui IU ui ^ o>motn o*mo*in ;jj CD *M • Ulbl UlUIUIhl Ul Ufltf UIUUIIU Ul .3C \_ ' • / . - or f' -" • * > - 38 - "••SlS»>»£p£* * 1 LJ Ul Ul Ul UJ Ui Ul U W W h l b l U&U1 U« CM CM CM CM CM CM CM l lat U 1*1 lil Ui W i >omraTim «-* V n i V « , C M : * 4 C M WCU • uy '•*'•" in'*• uv*r in -^r SWBWSW ( V » CM <» CM» CMC* v CM < CM OCV-* W « , CO;OI CO CM CO CM SSdS&tSS OS t ea ta a ea a ;u\.si:_in. ?s>in ;,oa in n «co «-f 10 •O r* * 00 O "O T-# UJU1UUCUIUI r JCM CD CM CO CM CO , Ut Ul Ul Ul Ul Ul Ul • » e• I.I I.I (tf df • • D 1 IO W <D Q) V <4 Cfi <O CO CD * > CO CO NrtMH niv4CM«4 a a s aaaaa aaoaoaa m a tn *9 m a en s mamamam a. snnaaioin * 1 « t *•« *4 K I>- CD'S O>:'PI» * i n ^cn vm -em » IO »O JO W »O tO SSQSSS P lil Lil Ul tii Iji Ul 111 J uiuiuiuiut tn a. si 10 iiv (L a i*i A <O rlrinrl «-l n~v4 S S S S S KU\9tfi SJP- ignNKNKN a s s s »<Y*CM • m § *« « ul U Ui ul ul ul ti> « in « i n « l A N A A K " fo««a«<o«>« CD CD CO COfit)CO CO t» »^ »s I>* ( v K tv s m is (n CJ un o 0. & CM irv rs. o cum in CJ irv si m »'in a. s IM irk is. G, cv'tn r- u •^ x UIWUlUIUIUl UIUI «o #« v« «« nnnnmonn UtUlhfUJUIUJUIUI m«in i m r t i A i * tn ^ m * i n •* m M SSSSSSOS o o X in-Bin aiAs r in s u i s m turn i S ( V T N » WW » <«-«4 <O rl « « • • • »* • i uwuuuu Yuwtn^tn ^ i n •* WIP* m sni&nsn k bi W bJ W WW li NNNNNNI UUUUIUUJ Ullil o^ « * o • o • m ^ r» »» ^ iw ik c p- VMIONQCW . SSCa & i^> s ^ & fs & i^ cu« c u < i n r « n « B S S (St S & S o t- a;, JO «in a «i ct Ul » *4«4 •< a. ^ ^ < - 39 - Ul U4tilIiJ;tit O* - UV.iO •«*-•»; r l * 4 * 4 N ID OJ COCM V Q SS5S5BB sms» ins in-sin 9 TO M<O «- N asaaas UJ Ul U W 1*11*1 |tf 1 O* w« » N « «" 1ft: U cu rs: r < : -w* orto? AGis a.-atom ; 9 f > « o 44 4 o s?o> -i mnuvn -KNvKt*.- . . . . . . N S C U in r^ f tj u uJUIUlUfhlUlUIUI • • » • * • * U» UUUUlUlitUU anrtn - 40 - •tsifia insin S S S r4««CMN Ul W Ui Ul UIUIUUI * rauvio ^ in com in mm CO CM CO CM CO CM CO-CM I O «*) 0 OO in in in IA in in in an CM n n n m n coc9;rcos.tS'a><o..S' I 1 X I I I I X X XXXX X o-Cfc a. cv. a-fLa.aL.a-a.fi. a.<i.aS S H r i r f H S H 19 ta «* S I *< OlrftM CM I M CM S Si S s«:9«saa.B eg a Q . s B s a a s tsa sacs s sin a a r v a m s u i s in Ut U) UlUf 1*1 Ul Ul Ul Ul U l U y U Ul o»«-KVr» wicnrv co s » * • * « r « CM Hinv in s < M M S m m in in m • » «co o s « s s i r f n co n s c * s n oo *9 ra D. «4|O « ft. •« to « en «•» « «««ftf» « n mnn n n n nnnbnn^ot * * O O O'OO OiO'O U O O O Of « o u o^uO^ o u x o u o o x -co) ma> in m in aaaa»ss s sa nsnansn ihsn X - -"'> a. a ram inainsinstnia : snoirisnn IIH • •• Ul U Ul ^^ft UJ I^JI f^J ^t^- (AJ I^J ^xl H O « f CO »-fiO"*taO • « N t D M I I (VCO <W4D w 0110 CM n CM «a CM t*^ f^9 ^9 CO CS CO ^3 fiO O-CM O CU » CU t> 01 UIUIUIUI UIUIUI Uf W W Uf til tai U U hi Ul Ul . ni M N « nniMMMAinin -» :» or o»»*»o» : o eaa> ai •o «'<o 4>:«4 <o^«<o « t o n ' t o < 4 ^ s 10 in: ca si n in <D SltB S S H H r i H Ulul Uf UlUf UIUI Ul nv4 4o o 4 «4OI.«4:ID CM r m CM to CM to ni a>;.fM: CM in :CM n CM IO;CU M «n4otf\«mon 4 > in in tn n in in n •< in e x I 9 IV CM v4CM Wl-.ni (9 G.B> SSSBGSSfi •s in s in tsi in <B I • • OO OOHJUOOCJOCJUIX X aaoisu tacacs a u a a a u oooaaoaooooooo t/) OOOOOOUUUbJUUUUUlUlliiUtilUI uuuouua<ocoiioa>irp«*viF ^ M W W M I M N N K N o*.i^.cv ni CM m m m CM CM (sou I9uuaaa»t49»«o>aaa»« p;op 00 p» • * « in «4«:«moIO** u u *•* • » s» 0C CU IV N N u i n s i n s et<sin a. <9 CM » r* & CM «• ins n a n s ins a. scu«-is-c>ni«-i>. Ul Ul Ul Ul Ul U b l Uff Ul Uf U l UIUIUI Ul UlUf U I U I U I SCO m\ m\ • 9 H9SSB955SS&I9ISSS • G IC G « E SMS CO U\ (MS • Jt Ul Ul Ul in ram < 4i in co in mm UIUIUIUIUIUIUIUI T40«-f<O *+W H l O CCUdOCMCOMCDfUcOnftnNniunM UlUIUiUI UIUIUI 'NNnnnnn, « «<o « o <o « m en in in in m m • a>o>*o> o>a>« ,m co m <s ce at co in in in in m m in ft I ft SBB * « > • • > UIUIUIUI UIUIUI ta run nn fin ««««««« ,'mnnnnnn ' » »oo »ai> - • » * UblUi nmra Uibi Ui U U U U Ul i -titacjonioifticocu. 9 UIUI UIUI UIUI UIUI UIUI Li UIUIUI -< O. «4 w<|* - 41 - s«5Bea a a a a *-t vf ni CM • » » • • • UlUf Ul W LJ mromro m com co m to «cs s a a S G S r-cMr-ca raaacs s m in in m in m m msinsin s i n s n am a ea S B B * * • • ! • « * UUIUUIULIUU *4COCO ¥•*• C9CM B C U SttN»lVO« UUUUblUUlU aNSNSNSN »CM»M» CMCDCUCOCUCOtUCD S« ^3 C5 ^B i ^ ^a ^Q tnmtn« S-C9 fifiB StlAS AQlASHt co w n o*> « s a s .« s in aaas 3 U|Uf Ul UJ Ul UfLal 111 Ul Ul Ul UI ram*oin so monom < a a a a asca (U«iMrtN t u r - cu •>. cu NBNSNBNB C mm mm m m in tas a s s s a a a aa a am s m a tn earn earn cam o-s » m « si fom to &• I&IO n<o s to m ••»•* N H n riNHni T* Ul IUlUlUIUtalt mcK ^^1 ^^T ^ ^ * ^^B ^^W ^^» CM BBBSK s n rsmsmE a.iscuinr».Gicuin Hrirlr4 X a. in :> V) > * « • • » > • tr mm mm m mm am a IAS ft- m s i n . s .m _a m • blUU hi UlbUl.U m n m to m K m m e B B S a a s «» m a m smstn • • • > • • • ; - " U bi WUI kiUf ul ul u ui U U U NGN SN (9NB ONON«M«N CU. ~ .O m m m * ^ . * CM,< u. a ;«7 h NKN co m to a CM SB'S..«<&'.' • • ft * • HttVNSNSN CM W o ( • • • • • • t Lil U U Ul bJ 111 UJ U I - - ^* ^^ ^^ ^" &*- f* ^^ -I**' (SNiaCVIDNOM r Kr r w f nipc cu <O CM « C M * O 4SSSS CU T I C V I * 4 O l Ul Ul bl Ul Ul til UlUI fl»h«SMSN 9 *S~IS O> CM*» CM*© a. si CM in r*.ckium r*. X nirn.tt,f>; in to in to m mtnmm in K N N n i -fwr-^, smsmisms CL SS S S Hr<IM UlUIUI Ul amacM cu<»cu « a »* B *». CU o> cu»cuo» cu » •tf CM uvmmm mmm inamsm "329 ^4 •3291 a s s a r i «-i cu UlU UIU1 Ul Ul Ul nniflniA o m to in to mmmm m M A N S »O GUSOGS • t t + « •>.»^fCCM O«CM«CM mmmcM «CM«CM B « 4 v«CM B• • a B.sa«4t* BBS aiSS * * ft • * » • « uuuuuiyyu wwnrinNBN • • ft UllUlMWl NBHS 4 V• • * K * • Ui UUI U U ) U U Ul momox -oo"0» * p*. r- -o CM » ; mA«r«c - mm BM z o ¥Ul A amcs. m a m a m ' • o o • * • " o • * * ' • - 42 - inam« »»<"« SS;BBB6SS uuyuuuuu '»»mn»in sin sin sin sin ul ul U U UI bl hi Ut «~o> cv s s m a in * n f t i n m i n " S ' S ' E S a s> s is s ' * ' * • > * p• • • K& ' UI ac UI ul UI UI UI U UI UI ni in o> c« • n *MO x mmv»mmmm U >• >— _i — ID in * * I I V I UUIUIUIWUUUI «in»HN>»in 4««*»asna n In in a c« m in m in o o. • «-1-1» f-•» ac««Ntinrf tfMMA«WKNK - 43 - B B S S «•••<rtwj • • • i r r t t Ul Ul Ul LJ ^*1?fajUJ Ijl B S a.Baa m in in in in in in s ta.Q s s a a IOra*o (O'w m » OHIDHtll r l » H S H S r l S Wa «4 xxxxxxxxxxxxxx 10fo n ' Q n n ^o JO D- a. a. a. a. O-JL. a. a. a. a. a. a. a. s a si & is s s a m s mam c* *•• r>» a co « a *>. fo •>* * x smsinsm s*\ - - - - - - - - GAS - - - . vrra<c in a a *t a HQWO s a . a a *•*** ri** UJ ur u u ui ui ui ui _ .-*s woa *-|!Q w a •ri *f r* HtlHHW IO'IO w 10 IO n ro 10 ;X.W+.* + ,o o,+ .+ + niFH'nir*> CUPV. cv»w O a a'a ta<sss matnauta ma x - - - - - - - - OU(d(9 (SObOUb O \O O O O O O.O O O.O O O Q man x - •• o. *a to >n • * • mm • • • » • + » v M A n n » n U U 1*1 UJ Ul t*J Ul Ul Ul !•! •»! |if <n>p Ul nAn . Ann OIDlD(D[Via)lOlO0IOtOlO4 Q n&CS O M ) ( O l D l O N N N * 5 l O I Q D D O JDID ID OS M IO I * O* a V ' S f a x w iv x « a s is as s a s a a a a sa O O O +O O "-.. "V '-. oo + o SS SS HrlHvl ; • * • » .« t • UI 1^ Ul t^ ^J wl ^J o a a s a aa •* m mm mm m in asa aas a t*>re« w r> w w UlulUlUlUIUltaltel ^rt .^^* ^^ .^^ ~^^ T^ ^^ ^^i io.to w»o t o w o n rtriHHl + , .„ -* • XN h » • I v»• o o ~- • XW +oc . . x • •—o o +—oo O O O OOO 0 0 , 0 0 0 CUM OOOUOUOXXX O OOO O O UUUUUU « • » • • * H+4 + • > l Ul Ul UlUI UlUl Ul Ul Ul Ul Ui IAI 0 Q a eo ca ID m a i t t o a i OZ v Ul UI 1*1 Ul Ul Ul Ul Ul Ui Ul UA Ul U l Ul Ul I d UI Uf Ul Ul ^ o - - - - ssssiai • ft IT IT ft ft " ^ 'UiUllAl UlUIUlUl »>to ni B \ • « s a S G S S d B • M HH • * I R H I H t M V I l ' n• « N S S G * •*• k » • C » •- u u ui uturuiut B9 S S B ^ S ^ •^ in mm m mm,m nr* n n n r a r o B ^»(.* •""' ii-.ul-laIUI UiUI UlUI KUIUUIUUlUftbilUILJtaLJUIUlUf •— o i. • - -r-cato-* m«fs.a:at i UJ UJU' UJ Ui Ul Ul UI '<|MD'ini&.tf>ltl m K »9nnrt «f» w b . iv *< CM i s ev r s CM •* •< » « ^ r ^ ^ ^ pv GiSG(S& - : . ^ ^ : ^ - - - - 44 - into a OJIA sstaeas • • - • •• • Ulkl Ul UtUl smsms Si cos cos SHSHSk QS s*4oi • k• • I * t UtbtUklbtUIUl » » » O OQ £* s a seas sa » • * • • • * 4 1 I I I i • * Ul Ul UJ UJ til U UJ UJ UJ Ul UJ US 1*1 UJ Ul Ul o r ? r sa H G I H «CMOO IO « riT<n«O« GO O* <D HHHAIAAIOIN S S S S G 5 QSl Q15BSS UlUl Ul UIUJ « 1 1 1 • 1V k n«rlOrlt> is s s a <s s n s ins ins un s in s i n s IH 1*3 itt UtUl Ul Ul Ul >09E uvsincatn S5SSSSSS .•»,*•.-«• t > * <n at co a « .«CM ,-^tt4yO CM • ^ V* X lv# >ljr< -r* isasss instn^achsm •OH* SHHAI ss s . UlUl.U SKSSS s sas as SI9S S (9 S S Q • in a in a i n s in a nia ma ^n's in HW W sssss sss UtlUJ uiui uyufUbiuj O^VtO H A V I 3 nj c s v s <• is • s v * ' r f f t T< ^ •*-• at «H sins unstfi a « SwnS 'rtio to s us as -HtCMOk 00 O D O > 4 4 i > M O N ( D ID »»»<O(MO(h Ol to « *> CM » CM O» «OCM s '- S ,S S S .B Ul Ul U Ul bl' n«n«non« ma *»<in. * * IO »H SB G S S 61 S S ma ma in S B\ Bnsns n_ a m *nf^s N in I suisinsin sin x a si n in M S mm U I N & CMllM*- X a. a. in ^ Ul U U I UIUI Ul 5J Ul UIUI ULJUiUU] msABin osvsa Ul Ul UJ UJ i J t i l U Ui bl Ut Ul UI Ul ul Uf Ul Ul » l 9 n n n n to x !. K\s»Ktf\s ins. CM >sns» in stnatn in a in e» in s i n s u ) S S S S SBC » * *• • t * t 1 • ft K 4 i l l ] lai UILU IJ )n*Kt*in*iiv > n i «o cw m cv I D CM i o» t US BS S Ul u z • - • •4 a. *4 *4^r « » v i v « _ »- _ a. v i « 4 « « o> w4^ « - 45 - rtoinocaojifi BSSSSOSS (D CS r l S H S aa in a a a ts a m a m s in a >om *% 1-1 UJ t>I i.t Uf tif t j | |»* It' U\ CSEPJI5E1SB u a *s a a s a a a t.i iJ ^j u UUIUUIUI -<mm ««stnam T. O ~ - - - sinstft sm i.i u u u »- IAI |sj u l«l <iAU\«n«snG -KID is me mat - 46 - I479£< I4Z4E- XX XX 0.0.0.0. Sk C9 ra 51 s eaea (9 UIUJ CO S X XX X X X I T O. 0,0.0. CL. 0.0-0. sae> a ws s s ss s ui U l Ul Ul Ul UJUJ n TO as » a S Is. SSQ TfXrtrtOT • • t I » i t ; * bf 1^1 U^ *•* iff- ifct U l U l o iv> o m » i*vcKmv in in in msn in in in m «tf** *n * in '*• ^ n ft w o ro o^ (O . N O ni o»w o» ru o* SSSSS 113T0E- PH) PH) Ul (al UIUUI Ul i M9I WWNrO SBfiSOSS9 tmsinsm ams x - -- a. «4to <o *-* rw A W a » « raw a s ra s 51 s a s aa • t UIU1U1 UlUlUlUtuI * » r oin tf> o r * XC GOO OO•OO••• (OMROon+vo * • • CMrs.CM in us in in in in in SS Q S S ISISS OOOOOOOOUOOOOl + OUUOUU U U I U O O O I 13CS U(96(9l5Ot9UOO<3 tS O OOOOO OOO O OOOO Q. s a <s SSG1S S S Kl... a >o in co ea to in « 4> 4t O H W4H) XCWM ZNSBB s s i a t a s s s s s s a o oo+ oo OO + O i- Uf Ul Ulbl U Ul Ul ./ ui ui ui ui ui ui'ia' ui1 in in in mm in in in. m * in Tin * m ; * * mu> tn mm mm 1915 IS <3O S B s m cam S A G o. e. fw mr-S N I O HHW SIMS in o IAE in Q Mm •x a. sins X a. SQS IS*4f4Hr1 • • • ff&pt B Ul Ul Ul Ul Ul Ul UlUI tn VI* - U1UI Uf % con « nmn «oy (Mna'a' a o I LU Ul Ul Ul Ul Ul Ut UJ « v « *»in»m min<n tfttnuitft m mv n4w«iA« »no> no>K)»n CM» CM O-C\J» CVJ O- ntr^ni - 47 - lonrwcu r*. CM r* s e a s *-rw cu CM « • • * • - • • t n •» « -t U U U UI Ul cMm 01 in cu r<.« r» <© t«w tor? 0 i o « i o n rt iftro CUP- cur* cu cum t s . s cum P*.S _ » »« • » t t U UI U UJ bl U lil p p p PP r ra cup-inra s tutfi & » s s eats • • • • » « • • uuiuiuuuuy mtncutncumoim 'Oin4)inom«m U U tilU U tal U U cap*. 4>P> ar*. Q K t o> in o> H\ cMn o*m mm in i n n in m <o * « * « <o *o t o nramraraw a * UI A SBSSSSS B• B• * * * UUlUblUlblUl co » w cu tn cu in IAK(U«OIAA A5UVQIA WinWinW SS5SSS5 is in B in s m 0*0 • • a# • 'OHDO 4>tO«-ttWT wws a s s a s • » • » • • * * t • • k•I B 1^ ^ ^ ^JU UJLLI U J U I U I in cum CM in & ssaasas « • • • • r •• « Lil IAI UI tftl W U I • • " • ' Ul ulUtUIUIUJUIUl ANA NANtfN in in in in in in in <o * -o * * *i * roto i o n nrara 3»*o«nimcintv msinsm win win wi a s s QSSBSsas tain sins ins ms ms me ms t n s i n s i n s - - - - - - - . !&ran A S •oin <o QS rotnto w HHrl ss -* m in in in in m m in in intf\tn tn in jJ5 25£ CTXMCT.ni » sinsm e n s i n s tn Hfis s s Si -as S49BE. L357ES49BE. L357Ei ss UIUI UIUI ar-ar* • 10*10 IdUuIlilUuiUKJ NIANIANIANA on m«m«in osdcos s u n s m<am s m m n m t N s n o-siumr. Si CU ts. si w m p* > m cum cum cinintnmininm in in in m in in m * * : « «O * *O * rowraw»to »o • ui - - ' u u i u> UIUI ui uiui 'c CM o i n s in *4in «4 o . - . O o m sa in s ^- f*» O CM • * Pw « x • • - -- =» CLSCM •t^CT. I in s n s i n c •- ^ OR • - • - • - - \ « « U- ' ' • s^asaa as a OSS « «««««« r^--rt «*© *• m «u m mminmvtinm 2S « Bits x ts vi ecint9in I • •- - • • - - - - IL«4|-r * * l> *H <• r «4«4 U i -r- -^ ^'*4 n> s m' S'in n n n N B <<III H - 3" * •-' J o • «. S/E.S.B: CSE-IS OT O 4 ui K curap^m cuts ra snaisisissiB metis r*-in n* o w t hI • k» « * U Ul UI U U Ut Ui U cu in cu tn cu m cu in m«m«m - u "' (O W fO IO rt lA WjA OCA " * « I K t. * B U U UlU I»J 1*1 U rfNKNNN r Km NmNmN mN mm m rain ram ra nir^ nir^ cu ; r^ t*i cu is u\ cu in cu •;.O.'." -::'12..iBa\W»coa:<o.a> tmamsmsms p*-cu raco »o ea ra s Bss H^N n <4XE U1U1UIU1UIUI UUI 61>CS P S r K US u l Lai Ul U l UI 111 UlUMUIUlU R wJ . ^ ^ s. in K in E. in ts tft TOTAL SOLUBILITY COO PH A 1 '1,0) f»,5499«2E»B7 4,'fl) 6,9) 9.C) f,<552918C-03 P,386622F»«7 <<l7531A6Ea05 (14, * i (1*.5) B, 753165E*f>0 (i.23ai72E»03 r VS, PH FROM REACTIONS PH (•0,5) ( 2.0) < 4.5) C 7,0) C 9,5) (12,0) (14.5) (17.B) PH 0,F49962E*06 0,549992E*B1 B,53931?E-B4 0.788218E.B7 B.238172E.B4 0.753165E-BJ 0,238172E*01 B,753165E*B3 B,549962E*l>5 ( 2!s> ( 5,3) 7,5) (15,0) (17,9) 0,7531«5E-B4 , i 7EH «l,753165t*Bl 72EB« PH ( 0,5) ( 3.0) ( 5,5) ( 8,0) (10.5) (13,0) (15.5) J16.0) PH H,5<9963E»B4 a,55025BE-Bl B,645798E-B6 0753466E06 0.753165E-B1 0,Z38l72E*B2 B,753165E*B4 ( 3.5) . ( 8,5} (11.0) (13.5) 114.0) (IB,5) 0.55H897E-02 , 1 f,7531»5E-03 0,238l72E*aB B,753i65E*lt2 0,238172E*0i oo ^ ^ » , J&" 1= " " ""' ~-^' '' —~* °^ 4_ * i- j i ' rv - \ -^V r - 1 * ~- Additional-copies /of this document „ m Scienfific "DWfument Distrfb^tiftn^fficebT" Atomic" Energy Ch"aLk Rivcr^ O n t a r i o , Canada'' Ch"Lk Riv -?*. -.> ^ Price--~$1 Od per, copy W*S n^^-^*™- j !• £ •; • £-* «rW ^rjT ^c^% J
© Copyright 2024 Paperzz