COSMO/ICON land-surface processes and physiographic data J. Helmert with contributions from colleagues inFE1 GB FE 14 – 03/2017 Physics in ICON Process Radiation Non-orographic gravity wave drag Sub-grid scale orographic drag Cloud cover Microphysics Convection Turbulent transfer Land Authors Scheme Origin Mlawer et al. (1997) Barker et al. (2002) RRTM (later with McICA & McSI) ECHAM6/IFS Ritter and Geleyn (1992) δ two-stream GME/COSMO Scinocca (2003) Orr, Bechtold et al. (2010) wave dissipation at critical level IFS Lott and Miller (1997) blocking, GWD IFS Doms and Schättler (2004) sub-grid diagnostic GME/COSMO Köhler et al. (new development) diagnostic (later prognostic) PDF ICON Doms and Schättler (2004) Seiffert (2010) prognostic: water vapor, cloud water, cloud ice, rain and snow GME/COSMO Bechthold et al. (2008) mass-flux shallow and deep IFS Plant, Craig (2008) stochastic based on Kain-Fritsch LMU, Munich Raschendorfer (2001) prognostic TKE COSMO Mironov, Machulskaya (new) prognostic TKE and scalar var. ECHAM6 Neggers, Köhler, Beljaars (2010) EDMF-DUALM IFS Heise and Schrodin (2002), Helmert, Mironov (2008, lake) tiled TERRA + FLAKE + multi-layer snow GME/COSMO Raddatz, Knorr, Schnur JSBACH ECHAM6 Key task for parametrization Parametrization schemes express the effect of subgrid/subscale processes on resolved variables – solving the closure problem Radiative transfer Transfer of heat, moisture and momentum Land/Sea surface characteristics courtesy to Anton Beljaars Key task for parametrization Parametrization schemes express the effect of subgrid/subscale processes on resolved variables – solving the closure problem Radiative transfer Cloud Physics Transfer Scheme Radiation Transfer of heat, moisture and momentum Data Assimilation Land-Surface Scheme TERRA ExtPar Physiographic data Land/Sea surface characteristics courtesy to Anton Beljaars Parametrization schemes Land-Surface Scheme TERRA Consider surface energy budget Impact parameters: soil moisture and type, vegetation, surface roughness and land-use class, snow coverage Surface temperature depends on surface energy budget – determines PBL development Relationship between energy budget and water budget has to be considered courtesy to Anton Beljaars Parametrization schemes Land-Surface Scheme TERRA Surface temperature considers temperature of snow covered and snow free surface fraction (snow tiles) One-layer vegetation – Evapotranspiration after Dickinson (1984) – interception reservoir Urban areas: modified surface roughness, leaf area index, plant coverage detailed consideration possible Transfer of heat, moisture and momentum PBL coupling: application of the turbulence scheme at the lower model boundary and iterative interpolation – Consideration of TILES (in ICON) courtesy to Anton Beljaars Parametrization schemes Land-Surface Scheme TERRA Snow: One layer – prognostic variables : snow temperature, snow water equivalent, snow density, snow albedo - Multi-layer snow model possible Soil: 7-layer soil model + 1 climate layer - layer-depth between 1 cm and 14.58 m Consider heat transfer and water transport including soil type dependent computation of fractional freezing/melting of total soil water content in 6 heat, moisture active soil layers inTransfer the soil of including soil ice and momentum Ocean: Prescribed surface temperature (analysis) - Charnock formulation for roughness length – Sea ice model Fresh water lakes: Lake model courtesy to Anton Beljaars ICON dynamics-physics cycling Dynamics Tracer Advection Tendencies dtime dtime * iadv_rcf Fast Physics Satur. Adjustment Convection dt_conv Turbulent Diffusion Cloud Cover dt_conv Microphysics Radiation dt_rad Non-Orographic Gravity Wave Drag dt_gwd Land/Lake/Sea-Ice Satur. Adjustment Sub-Grid-Scale Orographic Drag Slow Physics Output „dt_output“ dt_sso ICON setup for land-surface Current experiments for new COSMO version NAMELIST LND_NML LMELT LMELT_VAR ITYPE_HEATCOND IDIAG_SNOWFRAC ITYPE_EVSL T T 3 20 4 ITYPE_ROOT ITYPE_INTERCEPTION CWIMAX_ML ITYPE_HYDBOUND LSTOMATA LSEAICE 2 1 5,00E-04 1 T T LLAKE T TERRA - Structure H1 LvE1 H2 LvE2 H3 LvE3 0.00-0.01 0.01-0.03 0.03-0.09 0.09-0.27 0.27-0.81 0.81-2.43 2.43-7.29 7.29-21.87 H4 LvE4 H5 LvE5 H6 LvE6 TERRA – Energy budget Solar radiation Sensible heat Latent heat Snow 0.00-0.01 Heat release by freezing/melting Snow/Soil Heat exchange Soil heat flux 0.01-0.03 …. Heat release by freezing/melting TERRA – Energy budget Thermal processes Evolution of the soil temperature Evolution of the soil temperature layer 1 Surface forcing Frozen soil - Soils maintain some liquid water at temperatures below freezing point - Freezing point depression: Curvature of water around small hydrophilic soil particles (Davis, 2001) - Analogous to freezing point depression by solutes in water - Result: Thin liquid water films surrounding soil particles at T<0°C Frozen soil For peat f_c and f_s of sand is used Frozen soil Snow Main effects Insulation effect: Decoupling of soil from atmosphere (30%-90% of the snow mantle is air) Albedo Effect: Higher albedo than any other natural surface (0.4-0.85 for bare ground/low vegetation, 0.2-0.33 for snow in forests) Snow melting prevents rise of surface temperature above 0°C for a long period in spring – impact on hydrological cycle and energy budget at surface G. Balsamo, 2007 Snow Model One layer – prognostic variables : snow temperature, snow water equivalent, snow density, snow albedo Multi-layer – Vertical profiles in snow pack; considers equations for the snow albedo, snow temperature, density, total water content and content of liquid water. Therefore phase transitions in the snow pack are included. Snow aging processes Albedo and density High Albedo Low Density Low Albedo High Density Snow Qrad Tsnow f snow Ts hs ρ s , SWE Tso1 (1 − f snow ) Ts Snow Snow fraction Schneebedeckungsgrad Schneebedeckungsgrad ist lineare Funktion des SWE Einfluss von Wald und subskaliger Orographie wird im Schneebedeckungsgrad nicht berücksichtigt f snow SWE = 0.015m f snow = f (hsnow , SSO, landuse, freshsnow) Existenz von Schnee wird bisher bei der Bestimmung der skalaren Rauigkeitslänge nicht berücksichtigt Roesch et al., 2001 Snow Thermal processes for snow Evolution of the snow temperature Heatflux through the snow Surface forcing ICON setup for land-surface Current experiments for new COSMO version NAMELIST LND_NML LMELT LMELT_VAR ITYPE_HEATCOND IDIAG_SNOWFRAC ITYPE_EVSL T T 3 20 4 ITYPE_ROOT ITYPE_INTERCEPTION CWIMAX_ML ITYPE_HYDBOUND LSTOMATA LSEAICE 2 1 5,00E-04 1 T T LLAKE T TERRA – Water budget Transpiration Evaporation Snow, Rime Snow Rain, Dew Interception Surface runoff 0.00-0.01 Infiltration 0.01-0.03 Capillary transport Gravitational transport Sub-Surface runoff …. TERRA - Structure Hydrological processes TERRA - Structure Hydrological processes Interception store Snow store Soil water Soil ice TERRA – Evapotranspiration (Ament, 2006) TERRA – Soil water transport Evolution of the soil liquid water fraction Richards equation for the water flux Hydraulic diffusivity and conductivity are soil type dependent ICON setup for land-surface Current experiments for new COSMO version NAMELIST LND_NML LMELT LMELT_VAR ITYPE_HEATCOND IDIAG_SNOWFRAC ITYPE_EVSL T T 3 20 4 ITYPE_ROOT ITYPE_INTERCEPTION CWIMAX_ML ITYPE_HYDBOUND LSTOMATA LSEAICE 2 1 5,00E-04 1 T T LLAKE T ExtPar Physiographic data B. Ritter NWP and Climate models: e.g. ICON R02B07 13 km, CDE 2.5 km Physiographic data Orography GLOBE: 1 km ASTER: 0.03 km Aerosols: 500 km NDVI: 5 km Soil data DSMW: 10 km HWSD: 1 km Lake: 1 km Surface albedo: 5 km T2M climatology: 50/500 km Land use GLC2000 1 km GLCC 1 km GlobCover 0.3 km Physiographic data on model grid Impact of physiographic data LE H H LE Uncertainties: Land-Sea Mask GLCC USGS land use / land cover system GLC2000 land use classes Globcover 2009 (now used to derive land-sea mask) GLOBE Orography: HSURF Land use: LAI_MAX Land use: Evergreen Forest Land use: Surface Emissivity Albedo-MODIS: ALB_DIFF CLIM Soil-DMSW: Soil Type COSMO/ICON land-surface processes and physiographic data Very efficient land-surface scheme TERRA Considers snow, vegetation, frozen soil Energy – and water budget Valid for all Earth‘s climatic zones Uses physiographic data from EXTPAR GB FE 14 – 03/2017
© Copyright 2026 Paperzz