Total: 30 pts (=15% of the final grade ) Time allowed: 50 minutes. You are not allowed to use any electronic devices, such as calculators, laptops or phones, during the test. Please show your steps clearly. 1. (10 pts) Evaluate the integral. Z (a) (2 pts) sin x cos x dx. Z (b) (3 pts) tan2 (2x) dx. Z (c) (5 pts) 1 tan−1 x dx. 0 Sol. (a) Z Z sin x cos xdx = Z 0 sin x(sin x) dx = udu (u = sin x) u2 = +C 2 sin2 x + C. = 2 (b) Z Z du 2 du tan u ) (u = 2x ∴ dx = 2 Z 1 = sec2 u − 1 du (tan2 u = sec2 u − 1) 2 u 1 = tan u − + C 2 2 tan 2x = − x + C. 2 2 tan (2x)dx = 2 (c) Z 1 −1 tan 0 −1 1 Z 1 x(tan−1 x)0 dx 0 π Z 1 x = 1· −0·0 − dx 2 4 0 1+x Z π 1 1 (1 + x2 )0 = − dx 4 2 0 1 + x2 Z π 1 2 du = − dx (u = x2 + 1) 4 2 1 u π 1 = − [ln |u|]21 4 2 π 1 = − ln 2. 4 2 xdx = x tan 1 x 0 − 2. (10 pts) (a) (3 pts) Compute d dx sec x and express it in terms of sec x and tan x. Z (b) (2 pts) Prove that sec x dx = ln | sec x + tan x| + C. Z (c) (5 pts) Compute sec3 xdx. d Sol. (a) dx (sec x) = sec x tan x. (You can write the answer directly, or derive it using the derivative of cos x.) (b) d (sec x + tan x)0 sec x tan x + sec2 x (ln | sec x + tan x|) = = = sec x. dx sec x + tan x sec x + tan x So R sec xdx = ln | sec x + tan x| + C. (c) Z 3 Z sec x(tan x)0 dx Z = sec x tan x − tan x(sec x)0 dx (by parts) Z = sec x tan x − tan x · (sec x tan x)dx Z = sec x tan x − sec x tan2 xdx Z = sec x tan x − sec x(sec2 x − 1)dx Z Z 3 = sec x tan x − sec xdx + sec xdx sec xdx = So Z 2 Z 3 sec x dx = sec x tan x + sec xdx = sec x tan x + ln | sec x + tan x| + C i.e. Z sec3 xdx = (by (b)). 1 1 sec x tan x + ln | sec x + tan x| + C1 . 2 2 2 3. (10 pts) (a) (3 pts) Write out the form of the partial fraction decomposition of the function. Do not determine the numerical values of the coefficients: (i) x3 + 1 x2 (x2 + 1)2 (ii) (x2 x + 1)(x2 − 1) (iii) 5x2 1 − 2x3 Z 1 dx. (b) (4 pts) Compute 2 x +x Z ∞ 1 (c) (3 pts) Is dx convergent or divergent? If it is convergent, compute its value. (x + 1)2 1 Sol. (a) ii. i. x3 +1 x2 (x2 +1)2 (x2 = A x B x2 + + Cx+D x2 +1 + Ex+F (x2 +1)2 (note that x2 + 1 is irreducible) x x = 2 (note x2 − 1 is not irreducible) 2 + 1)(x − 1) (x + 1)(x − 1)(x + 1) A B Cx + D = + + 2 x−1 x+1 x +1 iii. 1 A B C 1 = = + + . 5x2 − 2x3 x2 (5 − 2x) x x2 5 − 2x (b) As x2 + x = x(x + 1), let 1 x2 +x = A x + B . x+1 Then 1 = A(x + 1) + Bx = (A + B)x + A. So ( A+B =0 A=1 Therefore A = 1, B = −1, i.e. 1 1 1 = − . x2 + x x x+1 Z Z 1 1 1 ∴ dx = − dx x2 + x x x−1 = ln |x| − ln |x − 1| + C. (c) Z 1 ∞ 1 dx = lim t→∞ (x + 1)2 Z Therefore the improper integral 1 ∞ Z t 1 dx 2 1 (x + 1) Z t+1 1 = lim du (u = x + 1) t→∞ 2 u2 t+1 1 = lim − t→∞ u 2 1 1 = lim − + t→∞ t+1 2 1 = . 2 1 dx is convergent with value 21 . (x + 1)2 3
© Copyright 2026 Paperzz