About an even as the sum or the difference of two primes - HAL

About an even as the sum or the difference of two primes
Jamel Ghannouchi
To cite this version:
Jamel Ghannouchi. About an even as the sum or the difference of two primes. Bulletin of Mathematical Sciences and Applications (www.bmsa.us), 2013, 2 (3), pp.44-52. <hal-00862954v1>
HAL Id: hal-00862954
https://hal.archives-ouvertes.fr/hal-00862954v1
Submitted on 17 Sep 2013 (v1), last revised 20 Jan 2014 (v3)
HAL is a multi-disciplinary open access
archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.
About an even as the sum or the difference of two primes
Jamel Ghanouchi
Ecole Supérieure de Sciences et Techniques de Tunis
6 Rue Khansa 2070 Marsa Tunisie
Abstract
The present algebraic development begins by an exposition of the data of the problem.
The definition of the primal radius r  0 is : For all positive integer x  3 exists a finite
number of integers called the primal radius r  0 , for which x  r and x  r are prime
numbers. The corollary is that 2 x  ( x  r )  ( x  r ) is always the sum of a finite number
of primes. Also, for all positive integer x  0 , exists an infinity of integers r  0 , for
which x  r and r  x are prime numbers. The conclusion is that 2 x  ( x  r )  ( r  x ) is
always an infinity of differences of primes.
Keywords : Goldbach ; De Polignac ; Twin primes ; Algebraic proof
Introduction
There is a similarity between the assertion : “an even number is always the sum of two
primes” and the assertion : “an even number is always the difference of two primes”. The
present article gives the proof that the two assertions are the consequences of the same
concept by the introduction of the notion of the primal radius.
The proof
Let us suppose that exists an integer x  3 for which 2 x is never the sum of two primes,
then for all p1 and p 2 primes, 3  p 2  p1 , 2 x  p1  p 2 , or
2 x  p1  p 2  2 b p1 , p 2  p1  p 2  2 b
then x 
p1  p 2
b
2
.
But for all p1 , p 2 exists y
, for which
y 
p1  p 2
b
2
Let
x1  p1  2 b
,
x2  p 2  2b
,
x3  p 2  2 b
,
x 4  p1  2 b
We deduce that
x
p1  p 2
p1  x 2
b
2

p1  x 3

x1  x 3
p1  p 2
b
p1  x 3
x 4  x3
b
 2b 
p1  x 2
x1  x 3
2
x1  x 2

x4  x2
 3b
2
x1  p 2

2
b
b
2
b
2
2
2

2
2
2

x1  p 2
2
2
y 
 2b 
x1  x 2
b
2
x 4  x3
 3b 
x4  x2
2
2
x1  x 2  p1  p 2
x1  x 3  p1  p 2
1
b
Lemma 1
The following formula
x
p1  p 2
p1  x 2
b
2

p1  x 3
x1  x 3

2
y 
x1  p 2
p1  p 2
x 4  x3
b
p1  x 2
 2b 
b
x1  p 2

x4  x2

x1  x 2
2
x1  x 3
2
b
 3b
2
2
p1  x 3
x1  x 2
2
2
b

2
2
2

 2b 
2
b
x 4  x3
2
b
2
 3b 
x4  x2
2
b
2
Imply that exist p1 and p 2 prime numbers for which b  0
Proof of lemma 1
If x is prime 2 x  x  x is the sum of two primes, then p1  p 2  0
We will suppose firstly that ( x1  x 2 )( x1  x 3 )  0
Let
x1  x 2

p1  p 2
p1  p 2

x1  x 2
p1  p 2  4 b
x1  x 2  4 b
2b
,
p1  p 2
kk '  0  b  0
p1  p 2
4b
1
x1  x 2
We pose k 
4b
1
p1  p 2
x1  x 2
k' 
2b
x1  x 2
, we have supposed kk '  0
 ( x , y );   | x   y
,
x  y  (  1) y  x1  0
x  y  (  1) y  p 2  0
 ( k , k ');   | k   k '

2b
 
p1  p 2
2b
x1  x 2
 x1  x 2   ( p1  p 2 )  x1  x 2  p1  p 2  4 b   (  1)( p1  p 2 )
 1
 b
4
 x
( p1  p 2 )
p1  p 2
b
p1  p 2
2
y
p1  p 2

 1
2
b
p1  p 2
2
4

2
 1
4
( p1  p 2 ) 
( p1  p 2 ) 
x1  x 3
p1  p 2
x1  x 3


p1  p 2  4 b
p1  p 2
x1  x 3  4 b
x1  x 3
We pose m 
2b
p1  p 2
1
4
1
,
4b
p1  p 2
4b
x1  x 3
m' 
2b
x1  x 3
2

4
(1   )( p1  p 2 )
Let
p1  p 2
(1   ) p1  (3   ) p 2

1
 1
p2

 1
p2
, we have supposed
mm '  0  b  0
mm '  0
 ( m , m ');   | m   m '

2b
2b
 
p1  p 2
x1  x 3
 x1  x 3    ( p1  p 2 )  x1  x 3  p1  p 2  4 b   (   1)( p1  p 2 )
 b
 1
4
( p1  p 2 )
p1  p 2
 x
b
p1  p 2
2
y
p1  p 2
b
p1  p 2
2
b
4
 1

2
 1
4
 1

2
4
( p1  p 2 )  
 1
( p1  p 2 ) 
( p1  p 2 ) 
(1   )( p1  p 2 )

4
(1   ) p1  (   3) p 2

 1

4
p2
1
 1
p2
( p1  p 2 )  (    ) p1  (  2     ) p 2
4
But, let
p1  2 p  1
p2  2q  1
b
 (  1)( p1  p 2 )

 (  1)( p  q )
4
2b
 (  1) 
pq
k k'
 (   1)( p1  p 2 )
p  q 1

4
q  p  2b
 
2b
 (   1) 

2
pq
  
 p  q  1  2b
p  q 1
(q  p  2b )k '
m  m'
pq
( p  q  1  2b )m '
p  q 1
k  k '   2 kk ' 
 2 bk '
pq

 2( q  p  2 b ) k '
2
pq
 2 b (2 k ' 1)  2( q  p ) k '  b 
(q  p )k '
2 k ' 1
If we suppose k  0 then
k'

k

(q  p  2b )
( p  q )k
( p  q )( k  1)  2 b
2
k  k '   2 kk ' 
( p  q )k
( p  q )( k  2 k  1)
2
 b
2(2 k  1)


2 p  2 q  4b
pq
(q  p )k '
2 k ' 1
 ( k  2 k  1)(2 k ' 1)   2 k '(2 k  1)
2
 2 k k ' 4 kk ' 2 k ' k  2 k  1   4 kk ' 2 k '
2
2
3
 (   1)( p  q  1)
2
k  2k  1
2
 k'
2k
2
2k  k  2k  1
3
k  k '   2 kk ' 
2k  4k  2k
2
2k
2
3

2
2k
2
 3k  4 k  1  0  k   1  k '   1
1
Or k 
 k'1
3
2
If
2b
k  k '  1 

p1  p 2
 2b
x1  x 2
 x1  x 2   p1  p 2
 x1  x 2  p1  p 2  4 b  2 p 2  2 p1  2 x  p1  p 2  2 b  2 p 2
Impossible ! And if
k 
1
2b

p1  p 2
3
;k '  1 
2b
x1  x 2
 3 x1  3 x 2  p 1  p 2
 3 x1  3 x 2  3 p1  3 p 2  12 b  2 p 2  2 p1  12 x  6 p1  6 p 2  12 b  8 p 2  4 p1
2
 x
1
p2 
3
p1  N  3 | p1  2 p 2
3
And it is impossible !
The initial hypothesis is false : k can not be different of zero
2b
 k 
p1  p 2
0 b0
Another proof : (2 k  1)(2 k ' 1)  1  2 kk ' k  k '  0  (2 k  1) k '   k
2k  1 
k

k'
k '
2 k ' 1 
k 1
k ' 1

k
2k  1
2 k ' 1


k ' 1
k 1
a ( k  1)  a '(2 k  1)
a ( k ' 1)  a '

c ( k ' 1)  c '(2 k ' 1)
c ( k  1)  c '
,
 ( a , a ', c , c ')
(( a  2 a ') k  a  a ')( ck  c  c ')
(( c  2 c ') k '  c  c ')( ak '  a  a ')
( ac  2 a ' c ) k  (2 ac  ac '  3 a ' c  2 a ' c ') k  ac  ac '  a ' c  a ' c '
2


( ac  2 ac ') k '  (2 ac  3 ac '  a ' c  2 a ' c ') k '  ac  ac '  a ' c  a ' c '
2
2k  1
2 k ' 1
 1  ( k  k ')
a c ( k  k ' )  2 a ' ck  2 a c ' k '  ( 2 a c  a c '  a ' c  2 a ' c ')( k  k ')  2 a ' ck  2 a c ' k '
2

2
2 k ' 1
2
2
2
( a c  2 a c ') k '  ( 2 a c  3 a c '  a ' c  2 a ' c ') k '  a c  a c '  a ' c  a ' c '
2
 ( a , a ', c , c ')
, particularly
 ( k  k ')
2
( a , a ', c , c ') | ac '   k
2
,
a 'c   k '
2
2 k ' 1
ac ( k  k ')( k  k ')  (2 ac  ac '  a ' c  2 a ' c ')( k  k ')  2  kk '  2  k k '
2

2
( ac  2 ac ') k '  (2 ac  3 ac ' a ' c  2 a ' c ') k '  ac  ac ' a ' c  a ' c '
2
4
 2 ackk ' 2 ac  ac ' a ' c  2 a ' c ' 2  kk '
 ( k  k ')
( ac  2 ac ') k '  (2 ac  3 ac ' a ' c  2 a ' c ') k '  ac  ac '  a ' c  a ' c '
2
(1   ) p1  (3   ) p 2
If k  k '    1  x 
 p2
4
2
k k' 0
2 k ' 1
, trivial solution : it is impossible.
 2 ackk ' 2 ac  ac ' a ' c  2 a ' c ' 2  kk '

( ac  2 ac ') k '  (2 ac  3 ac ' a ' c  2 a ' c ') k '  ac  ac ' a ' c  a ' c '
2
Also (2 m  1)(2 m ' 1)  1  2 m m ' m  m '  0  (2 m  1) m '   m
2m  1 
m
m 1

m ' 1
m'
m '
2 m ' 1 

m
2m  1

2 m ' 1

m ' 1
m 1
a ( m  1)  a '(2 m  1)
a ( m ' 1)  a '

c ( m ' 1)  c '(2 m ' 1)
c ( m  1)  c '
,
 ( a , a ', c , c ')
(( a  2 a ') m  a  a ')( cm  c  c ')
(( c  2 c ') m ' c  c ')( am ' a  a ')
( ac  2 a ' c ) m  (2 ac  ac '  3 a ' c  2 a ' c ') m  ac  ac '  a ' c  a ' c '
2

( ac  2 ac ') m '  (2 ac  3 ac '  a ' c  2 a ' c ') m '  ac  ac '  a ' c  a ' c '
2
2m  1

2 m ' 1
2 m ' 1
ac ( m  m ' )  2 a ' cm  2 ac ' m '  ( 2 ac  ac '  a ' c  2 a ' c ')( m  m ')  2 a ' cm  2 ac ' m '
2

2
 1  ( m  m ')
2
2
2
( ac  2 ac ') m '  ( 2 ac  3 ac ' a ' c  2 a ' c ') m '  ac  ac '  a ' c  a ' c '
2
 ( a , a ', c , c ')
( a , a ', c , c ') | ac '   k   m
, particularly
2
,
a 'c   k '   'm '
2
2
2
 ( m  m ')
2 m ' 1
ac ( m  m ')( m  m ')  2(  '   ) m m '  (2 ac  ac '  a ' c  2 a ' c ')( m  m ')  2  ' m m '  2  m m '
2

2
2
2
( ac  2 ac ') m '  (2 ac  3 ac '  a ' c  2 a ' c ') m '  ac  ac '  a ' c  a ' c '
2
 ' 
 m   'm '
2
2
) m m '  2 ac  ac ' a ' c  2 a ' c ' 2(
)m m '
m  m'
m  m'
2
( ac  2 ac ') m '  (2 ac  3 ac '  a ' c  2 a ' c ') m '  ac  ac '  a ' c  a ' c '
 2 acm m ' 2(
 ( m  m ')
m  m'  1 x 
(1   )( p1  p 2 )
0
4
But
2
2 k ' 1

 2 ackk ' 2 ac  ac ' a ' c  2 a ' c ' 2  kk '
( ac  2 ac ') k '  (2 ac  3 ac ' a ' c  2 a ' c ') k '  ac  ac '  a ' c  a ' c '
2
For ( a , a ', c , c ') | ac '   k 2   m 2




2
2 m ' 1

, it is impossible
,
a 'c   k '   'm '
2
2
 2 acm m ' 2 ac  ac ' a ' c  2 a ' c ' 2  m m '
( ac  2 ac ') m '  (2 ac  3 ac ' a ' c  2 a ' c ') m ' ac  ac ' a ' c  a ' c '
2
 2 acm m ' 2 ac  ac ' a ' c  2 a ' c ' 2  ' m m '
( ac  2 ac ') m '  (2 ac  3 ac ' a ' c  2 a ' c ') m ' ac  ac ' a ' c  a ' c '
2
2
2 m ' 1
 2 acm m ' 2(

 ' 
) m m '  2 ac  ac '  a ' c  2 a ' c '  2(
2
2
 m   'm '
)m m '
m  m'
m  m'
2
( ac  2 ac ') m '  (2 ac  3 ac '  a ' c  2 a ' c ') m '  ac  ac '  a ' c  a ' c '
 2 acm m ' 2 ac  ac ' a ' c  2 a ' c ' 2  m m '
( ac  2 ac ') m '  (2 ac  3 ac ' a ' c  2 a ' c ') m ' ac  ac ' a ' c  a ' c '
2
 
2
2
) m m '  2 ac  ac '  a ' c  2 a ' c '  2  m m '
m
 m'

2
( ac  2 ac ') k '  (2 ac  3 ac '  a ' c  2 a ' c ') k '  ac  ac ' a ' c  a ' c '
 2 acm m '  2(
5
2
    '  ac '   k   m
2




m
2
k
2
m'

k'
2
2
k

2
,
a 'c   k '   'm '   m '
2
2
2
 (2 k  1)  
2
k'
2
2
m

2
2
m'
 (2 m  1)  
2
2
2
If      (    ) p1   2 p1  2  p1  (  2     ) p 2   2 p 2      
p1  p 2
b   (  1)
  (   1)
p1  p 2
4
 (
4
p1  p 2
4 p1
)( p1  p 2 ) 
 4 bp1  p 2  p1  (4 b  p1 ) p1  p 2  4 b  p1 
2
2
2
p1 and p 2 are primes and 4 b  p1 
p2
p 2  p1
2
p2
p2
p1
2
4 p1
2
and it is impossible because
p1
2
can not be an integer.
p1
     0  (    ) p1  (  2     ) p 2   2(1   ) p 2   2(1   ) p 2  0       1
 b
(  1)
p1  p 2
 x
,
2
x  y  p1
,
(   1)
( p1  p 2 )  
4
4
( p1  p 2 )  0
p1  p 2
y 
2
x  y  p 2 are primes y  r is the primal radius. As there is the condition
p 2  x  p1 , there is not an infinity of p1 , p 2
If ( x1  x 2 )( x1  x3 )  0  ( x 4  x 2 )( x 4  x 3 )  0
Let
x4  x2
p1  p 2
p1  p 2
x4  x2
k 
,
p1  p 2
x 4  x3


k'
x 4  x3  4 b
x 4  x3
,
4b
x4  x2
x4  x2
p1  p 2
2b
4b
p1  p 2
2b
p1  p 2  4 b
p1  p 2
1
1
x4  x2
p1  p 2
p1  p 2
p1  p 2
x4  x2  4b
2b
x 4  x3
m 

p1  p 2  4 b

m'
1
1
4b
p1  p 2
4b
x 4  x3
2b
x 4  x3
But b can not be equal to zero
in all cases, it means there is an impossibility related to the fact that
the conjecture is indecidable and if it is so, it is true ! Because, we
would find in the case it is indecidable and false with the computer
the 2x different of all sum of primes and it is contradictory !
Now, if we suppose that for all p , p primes, exixts x | 2 x  p  p
With the same reasoning and calculus  b  0
1
x
p1  p 2
2
b
,
y 
p1  p 2
2
b
2
1
2
, with the same reasoning, the same calculus but
replacing x by y and y by x , we prove that b  0 , which means that for all positive
integer x , exists p1 , p 2 , for which x 
p1  p 2
2
, if we pose
y 
p1  p 2
2
,
x  y  p1
y  x  p 2 primes, y is the primal radius. As there is no condition on x , y , p1 , p 2 ,
6
,
there is an infinity of couples of primes ( p1 , p 2 ) . For x  1 , p1 and p 2 are twin primes.
Let us prove it. Let us suppose that exists an integer x  0 for which 2 x is never the
difference of two primes, then for all p1 and p 2 primes, p 2  p1 , 2 x  p1  p 2 , or
, then x 
2 x  p1  p 2  2 b p1 , p 2  p1  p 2  2 b
But for all p1 , p 2 exists y
, for which
y 
p1  p 2
b
2
p1  p 2
.
b
2
Let
x1  p1  2 b
,
x2  p 2  2b
,
x3  p 2  2 b
,
x 4  p1  2 b
We deduce that
y 
p1  p 2
b
p1  x 2
2

p1  x 3

x1  x 3
2
x
p1  p 2
x 4  x3
b
p1  x 2
b
b
2
x1  x 2
x4  x2

x1  p 2
b
b
 3b
2
x1  x 2

2
x1  x 3
 2b 

2
2
2
p1  x 3
x1  p 2
2
2
2

 2b 
2
x 4  x3
2
b
2
 3b 
x4  x2
2
b
2
x1  x 2  p1  p 2
x1  x 3  p1  p 2
Lemma 2
The following formula
y 
p1  p 2
b
p1  x 2
2

p1  x 3

x1  x 3
2
x
p1  p 2
x 4  x3
b
p1  x 2
b
 2b 
x1  x 2

x1  p 2
b
b
x4  x2
 3b
2

2
x1  x 3
2

2
b
2
2
p1  x 3
x1  p 2
2
2
2

 2b 
2
b
2
x 4  x3
2
x1  x 2
 3b 
x4  x2
2
b
2
Imply that exist p1 and p 2 prime numbers for which b  0
Proof of lemma 2
If x is prime 0  x  x is the sum of two primes, then p1  p 2  0
We will suppose firstly that ( x1  x 2 )( x1  x 3 )  0
Let
x1  x 2
p1  p 2
p1  p 2
x1  x 2


p1  p 2  4 b
1
p1  p 2
x1  x 2  4 b
x1  x 2
We pose k 
2b
p1  p 2
kk '  0  b  0
1
,
4b
p1  p 2
4b
x1  x 2
k' 
2b
x1  x 2
, we have supposed kk '  0
7
 ( x , y );   | y   x
,
x  y  (  1) x  x1  0
y  x  (  1) x  p 2  0
 ( k , k ');   | k   k '

2b
 
p1  p 2
2b
x1  x 2
 x1  x 2   ( p1  p 2 )  x1  x 2  p1  p 2  4 b   (  1)( p1  p 2 )
 b
 1
4
( p1  p 2 )
p1  p 2
 y
p1  p 2
b
2
x
p1  p 2

 1
2
b
p1  p 2
2
4

 1
2
4
( p1  p 2 ) 
( p1  p 2 ) 
(1   ) p1  (3   ) p 2

4
(1   )( p1  p 2 )
4

1

 1
p2
 1
Let
x1  x 3
p1  p 2  4 b

p1  p 2
p1  p 2

x1  x 3
p1  p 2
x1  x 3  4 b
x1  x 3
We pose m 
1
2b
p1  p 2
mm '  0  b  0
4b
1
,
p1  p 2
4b
x1  x 3
m' 
2b
x1  x 3
, we have supposed
mm '  0
 ( m , m ');   | m   m '

2b
 
p1  p 2
2b
x1  x 3
 x1  x 3    ( p1  p 2 )  x1  x 3  p1  p 2  4 b   (   1)( p1  p 2 )
 b
 1
4
 y
( p1  p 2 )
p1  p 2
b
p1  p 2
2
x
p1  p 2
2
b
 1
4

 1
2
b
p1  p 2
4

 1
2
( p1  p 2 )  
4
 1
4
( p1  p 2 ) 
( p1  p 2 ) 
(1   )( p1  p 2 )

4
(1   ) p1  (   3) p 2
4

 1

1
 1
( p1  p 2 )  (    ) p1  (  2     ) p 2
But, let
8
p2
p2
p2
p1  2 p  1
p2  2q  1
b
 (  1)( p1  p 2 )
 (  1)( p  q )

4
2b
k k'
p  q 1

4
 (   1)( p  q  1)
2
q  p  2b
 
pq
 (   1) 
 (   1)( p1  p 2 )
2
2b
 (  1) 

pq
 p  q  1  2b
  
p  q 1
(q  p  2b )k '
m  m'
pq
( p  q  1  2b )m '
p  q 1
 2 bk '
k  k '   2 kk ' 

pq
 2( q  p  2 b ) k '
2
pq
 2 b (2 k ' 1)  2( q  p ) k '  b 
(q  p )k '
2 k ' 1
If we suppose k  0 then
k'

k

(q  p  2b )
( p  q )k
( p  q )( k  1)  2 b
2
k  k '   2 kk ' 
( p  q )k
( p  q )( k  2 k  1)
2
 b
2(2 k  1)


2 p  2 q  4b
pq
(q  p )k '
2 k ' 1
 ( k  2 k  1)(2 k ' 1)   2 k '(2 k  1)
2
 2 k k ' 4 kk ' 2 k ' k  2 k  1   4 kk ' 2 k '
2
2
k  2k  1
2
 k'
2k
2
2k  k  2k  1
3
k  k '   2 kk ' 
2
2k
2
2k  4k  2k
3

2
2k
2
 3k  4 k  1  0  k   1  k '   1
1
Or k 
 k'1
3
2
If
k  k '  1 
2b
p1  p 2

 2b
x1  x 2
 x1  x 2   p1  p 2
 x1  x 2  p1  p 2  4 b  2 p 2  2 p1  2 x  p1  p 2  2 b  2 p 2
Impossible ! And if
9
k 
1
2b

p1  p 2
3
;k '  1 
2b
x1  x 2
 3 x1  3 x 2  p 1  p 2
 3 x1  3 x 2  3 p1  3 p 2  12 b  2 p 2  2 p1  12 x  6 p1  6 p 2  12 b  8 p 2  4 p1
2
 x
1
p2 
3
p1  N  3 | p1  2 p 2
3
And it is impossible !
The initial hypothesis is false : k can not be different of zero
2b
 k 
p1  p 2
0 b0
Another proof : (2 k  1)(2 k ' 1)  1  2 kk ' k  k '  0  (2 k  1) k '   k
2k  1 
k

k'
k 1
k ' 1
k '
2 k ' 1 
k ' 1

k 1
k
2k  1
2 k ' 1


a ( k  1)  a '(2 k  1)
a ( k ' 1)  a '

c ( k ' 1)  c '(2 k ' 1)
,
c ( k  1)  c '
 ( a , a ', c , c ')
(( a  2 a ') k  a  a ')( ck  c  c ')
(( c  2 c ') k '  c  c ')( ak '  a  a ')
( ac  2 a ' c ) k  ( 2 ac  ac '  3 a ' c  2 a ' c ') k  ac  ac '  a ' c  a ' c '
2


( ac  2 ac ') k '  ( 2 ac  3 ac '  a ' c  2 a ' c ') k '  ac  ac '  a ' c  a ' c '
2
2k  1
2 k ' 1
a c ( k  k ' )  2 a ' ck  2 a c ' k '  (2 a c  a c '  a ' c  2 a ' c ')( k  k ')  2 a ' ck  2 a c ' k '
2

2
 1  ( k  k ')
2 k ' 1
2
2
2
( a c  2 a c ') k '  (2 a c  3 a c '  a ' c  2 a ' c ') k '  a c  a c '  a ' c  a ' c '
2
 ( a , a ', c , c ')
, particularly
 ( k  k ')
2
( a , a ', c , c ') | ac '   k
2
,
a 'c   k '
2
2 k ' 1
ac ( k  k ')( k  k ')  ( 2 ac  ac '  a ' c  2 a ' c ')( k  k ')  2  kk '  2  k k '
2

( ac  2 ac ') k '  ( 2 ac  3 ac ' a ' c  2 a ' c ') k '  ac  ac ' a ' c  a ' c '
 2 ackk ' 2 ac  ac ' a ' c  2 a ' c ' 2  kk '
 ( k  k ')
( ac  2 ac ') k '  (2 ac  3 ac ' a ' c  2 a ' c ') k '  ac  ac '  a ' c  a ' c '
2
k  k'  1 y 
(1   ) p1  (3   ) p 2
4
k k' 0
2
2 k ' 1

 p2
it is impossible.
 2 ackk ' 2 ac  ac ' a ' c  2 a ' c ' 2  kk '
( ac  2 ac ') k '  (2 ac  3 ac ' a ' c  2 a ' c ') k '  ac  ac ' a ' c  a ' c '
2
Also (2 m  1)(2 m ' 1)  1  2 m m ' m  m '  0  (2 m  1) m '   m
2m  1 
m

m'
2 m ' 1 
m '
m 1
m ' 1

m
2m  1
2 m ' 1


m ' 1
m 1
a ( m  1)  a '(2 m  1)
a ( m ' 1)  a '

c ( m ' 1)  c '(2 m ' 1)
c ( m  1)  c '
,
 ( a , a ', c , c ')
(( a  2 a ') m  a  a ')( cm  c  c ')
(( c  2 c ') m ' c  c ')( am ' a  a ')
( ac  2 a ' c ) m  (2 ac  ac '  3 a ' c  2 a ' c ') m  ac  ac '  a ' c  a ' c '
2

2
2
( ac  2 ac ') m '  (2 ac  3 ac '  a ' c  2 a ' c ') m '  ac  ac '  a ' c  a ' c '
2
10
2m  1

2 m ' 1
2 m ' 1
ac ( m  m ' )  2 a ' cm  2 ac ' m '  (2 ac  ac '  a ' c  2 a ' c ')( m  m ')  2 a ' cm  2 ac ' m '
2

2
 1  ( m  m ')
2
2
2
( ac  2 ac ') m '  (2 ac  3 ac ' a ' c  2 a ' c ') m '  ac  ac '  a ' c  a ' c '
2
, particularly
 ( a , a ', c , c ')
( a , a ', c , c ') | ac '   k   m
2
a 'c   k '   'm '
2
2
2
 ( m  m ')
2 m ' 1
ac ( m  m ')( m  m ')  2(  '   ) m m '  (2 ac  ac '  a ' c  2 a ' c ')( m  m ')  2  ' m m '  2  m m '
2

,
2
2
2
2
( ac  2 ac ') m '  (2 ac  3 ac '  a ' c  2 a ' c ') m '  ac  ac '  a ' c  a ' c '
2
 ' 
 m   'm '
2
2
) m m '  2 ac  ac ' a ' c  2 a ' c ' 2(
)m m '
m  m'
m  m'
2
( ac  2 ac ') m '  (2 ac  3 ac '  a ' c  2 a ' c ') m '  ac  ac '  a ' c  a ' c '
 2 acm m ' 2(
 ( m  m ')
(1   )( p1  p 2 )
m  m'  1 y 
0
4
2
But
2 k ' 1
 2 ackk ' 2 ac  ac ' a ' c  2 a ' c ' 2  kk '

( ac  2 ac ') k '  (2 ac  3 ac ' a ' c  2 a ' c ') k '  ac  ac '  a ' c  a ' c '
2
For ( a , a ', c , c ') | ac '   k 2   m 2




2
2 m ' 1
, it is impossible
,
a 'c   k '   'm '
2
2
 2 acm m ' 2 ac  ac ' a ' c  2 a ' c ' 2  m m '

( ac  2 ac ') m '  (2 ac  3 ac ' a ' c  2 a ' c ') m ' ac  ac ' a ' c  a ' c '
2
 2 acm m ' 2 ac  ac ' a ' c  2 a ' c ' 2  ' m m '
( ac  2 ac ') m '  (2 ac  3 ac ' a ' c  2 a ' c ') m ' ac  ac ' a ' c  a ' c '
2
 ' 
 m   'm '
2
2
) m m '  2 ac  ac '  a ' c  2 a ' c '  2(
)m m '
m  m'
m  m'
2
( ac  2 ac ') m '  (2 ac  3 ac '  a ' c  2 a ' c ') m '  ac  ac '  a ' c  a ' c '
 2 acm m ' 2(
2
2 m ' 1

 2 acm m ' 2 ac  ac ' a ' c  2 a ' c ' 2  m m '
( ac  2 ac ') m '  (2 ac  3 ac ' a ' c  2 a ' c ') m ' ac  ac ' a ' c  a ' c '
2
 
2
2
) m m '  2 ac  ac '  a ' c  2 a ' c '  2  m m '
m
 m'

2
( ac  2 ac ') k '  (2 ac  3 ac '  a ' c  2 a ' c ') k '  ac  ac ' a ' c  a ' c '
 2 acm m '  2(
    '  ac '   k   m
2




m
2
k
2
m'

k'
2
2

k
2
,
a 'c   k '   'm '   m '
2
2
k'
 (2 k  1)  
2
2
2

2
m
2
2
m'
 (2 m  1)  
2
2
2
If      (    ) p1   2 p1  2  p1  (  2     ) p 2   2 p 2      
p1  p 2
b   (  1)
  (   1)
p1  p 2
4
 (
4
p1  p 2
4 p1
)( p1  p 2 ) 
 4 bp1  p 2  p1  ( 4 b  p1 ) p1  p 2  4 b  p1 
2
2
2
p1 and p 2 are primes and 4 b  p1 
p2
p 2  p1
2
p2
p2
p1
2
4 p1
2
and it is impossible because
p1
2
p1
can not be an integer.
     0  (    ) p1  (  2     ) p 2   2(1   ) p 2   2(1   ) p 2  0       1
 b
(  1)
4
( p1  p 2 )  
(   1)
4
( p1  p 2 )  0
11
p1  p 2
 y 
,
2
x  y  p1
,
p1  p 2
x
2
y  x  p 2 are primes y  r is the primal radius. As there is no condition,
there is an infinity of p1 , p 2
If ( x1  x 2 )( x1  x3 )  0  ( x 4  x 2 )( x 4  x 3 )  0
Let
x4  x2
p1  p 2
p1  p 2
x4  x2
k 
,
p1  p 2
p1  p 2
x 4  x3

k'
p1  p 2
x 4  x3
,
4b
x4  x2
2b
x 4  x3  4 b
2b
4b
p1  p 2
x4  x2
p1  p 2  4 b
p1  p 2
1
1
x4  x2
2b

p1  p 2
x4  x2  4b
p1  p 2
x 4  x3
m 

p1  p 2  4 b

m'
1
1
4b
p1  p 2
4b
x 4  x3
2b
x 4  x3
With the same calculus and reasoning, it implies that b  0 .
But b can not be
equal to zero in all cases, it means there is an impossibility related
to the fact that the conjecture is indecidable and if it is so, it is
true ! Because, we would find in the case it is indecidable and false
with the computer the 2x different of all sum of primes and it is
contradictory !
For 2  p1  p 2 is a difference of an infinity of couples of primes. There is an infinity of
consecutive primes. And for all x  2104 , exists p1  p 2  2 , p 2 primes for which
2 x  p1  p 2
Conclusion
The notion of the primal radius as defined in this study allows to confirm that for all
integer x  3 exists a number r  0 for which x  r and x  r are primes and that for
all integer x  0 exists a number r  0 for which x  r and r  x are primes and that
exists an infinty of such primes. r is called the primal radius The corrolary is the proof of
the Goldbach conjecture and de Polignac conjecture which stipulate, the first that an even
number is always the sum of two prime numbers, the second that an even number is
always the difference between two primes and that there is an infinity of such couples of
primes. Another corollary is the proof of the twin primes conjecture which stipulates that
there is an infinity of consecutive primes.
References
[1] J. R. Chen, 2002, On the representation of a larger even integer as the sum of a prime
and the product of at most two primes. Sci. Sinica 16, 157-176.
[2] D. R. Heath-Brown, J. C. Puchta, 2002, Integers represented as a sum of primes and
powers of two. The Asian Journal of Mathematics, 6, no. 3, pages 535-565.
12
[3] H.L. Montgomery, Vaughan, R. C., 1975, The exceptional set in Goldbach's problem.
Collection of articles in memory of Jurii Vladimirovich Linnik. Acta Arith. 27, 353–370.
[4] J. Richstein, 2001, Verifying the goldbach conjecture up to 4· 1014, Math. Comp.,
70:236 ,1745--1749.
[5] L. E. Dickson, 2005, History of The Theory of Numbers, Vol1, New York Dover.
13