Calculus 12 LG 1 – 3 Name _____________ Worksheet Package Part A: 1. Find the first derivative of each function: a)!! y = 3x 2 ! 5!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!b)!! y = 8x ! 2 c)!! f (x) = 6x 2 ! 3x + 2!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!d)!! y = !x 2 + 6 e)!!g(x) = ! x 3 + 6x ! 3!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! f )!!h(x) = 5! 2 x 4 + 6x 2 ! 3! 4 g)!!k(x) = 1 8 2 6 2 4 3 x ! x + x ! !!!!!!!!!!!!!!!!!h)!! y = 6! 3 ! 8! 2 + 24 4 3 5 4 2. Given y, find dy : dx 1 2 1 a)!! y = 4x 3 ! 2x + 6!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!b)!! y = x 5 + x 3 ! x 2 +1 5 3 2 c)!! y = x 4 ! ! 4 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!d)!! y = ! 3 x 3 ! 3! x 3. Solve: a)!!if ! p = 4q 3 + 2q 2 ! 5!!!!!!!! find !! dp != dq b)!!if !g(t) = 4t 3 ! 3t 2 + 6t!!!!! find !g'(t) = c)!!if ! y = 2x 7 ! 5x + 3!!!!!!!!!!! find ! y' = 1 4. If y = 2x 3 ! 3x + 7 find: a)!!! y'!at! x = !2!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!b)!!! y'!at! (1,!5) c)!!! f (0)!and ! f '(0) !!!!! d) How can you use a graphing calculator to check your answers to these types of questions? 5. Find y' if: a)!! y = ax 3 + bx 2 + d !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!b)!! y = ax 4 ! ax 2 + bx c)!! y = 4ax 5 + kx 3 ! Cx + D!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!d)!! y = D 2 x 3 + 5M 3 x 2 ! 7!!!!!! 6. Find dy if: dp a)!! y = 4 p3 ! 2 p 2 + 6!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!b)!! y = !5p 4 + 6 p ! 2 3 c)!! y = 4mp 4 +16 p 2 ! 6c!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!d)!! y = 6a 4 + 8a 3 ! 2 p 2 7. If y = 6x 5 ! 2x 2 + 9x ! 3 find: a)!! y'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!b)!! y''!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!c)!! y''' d)!! dy d2y d 3y !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!e)!! 2 !!!!!!!!!!!!!!!!!!!!!!!!!!!! f )!! 3 dx dx dx 2 3 ! dy $ ! dy $ 8 g)!!# & !!!!!!!!!!!!!!!!!!!!!!!!!!!!h)!!# & !!!!!!!!!!!!!!!!!!!!!!!!!i)!! y( ) " dx % " dx % 2 8. If f (x) = 2x 3 + 6x ! 7 find: a)!! f '(x)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!b)!! f ''(x) 2 2 c)!! ( f (x)) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!d)! ( f '(x)) ! 2 ( ) e)!! ( f ''(x)) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! f )!! f ( ) (x) 9. Find 3 2 dy if: dx a)!! y = Ax 3 ! Bx 2 ! C!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!b)!! y = 5Ax 3 ! 6Bx 2 ! Cx!! !!!!!!!!!!!!!!! c)!! y = 5A 2 x 2 ! 6B 4 x 2 ! C 5 x 10. If y = 2Dx 5 ! 3k 2 x 3 + 2 find: a)!! dy dy !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!b)!! dx dD c)!! dy dy !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!d)!! dk dz 3 Part B: 1. Simplify each expression then find y' . a)!! y = ( 2x +1) (3x ! 5) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!b)!! y = ( 2x ! 3) 2 3 c)!! y = ( 4x ) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!d)! y = x 2 ( x 3 ! 6 ) 3 e)!! y = (! x ) ! 3! x!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! f )!! y = x 2 ! 5x + 4 x !1 2. Rewrite each rational expression using exponents to remove quotients and then find the first derivative. 5 6 a)!! y = 2 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!b)!! y = ! 3 x x c)!! y = 2 3 5 2 3 !!! 2 !+! !!7x!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!d)!! y = 4x 3 !!! 2 !+!7x !5 !!! !4 4 x x x x x 3. Rewrite each expression using exponents to remove radicals and quotients, then find the first derivative. a)!! y = 10 x !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!b)!! y = 4 3 x 2 c)!! y = e)!! y = 60 5 x 2 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!d)!! y = x !+!6 x 3 6 7 2 7 2x !3 !+! 3 !!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!e)!! y = 5 !!! 4 3 3 x x x x 4 4. Use the PRODUCT RULE to find the first derivative. DO NOT simplify answer. a)!! y = (3x +1)(2x ! 5)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!b)!! y = 3x 2 (8x ! 3) c)!! y = (2x +1)(4x 2 ! 4x +1)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!d)!! y = (3x 3 ! 2x 2 )(3x 3 + 2x 2 ) 5. Find dy at the given value of x. Do NOT simplify before evaluating. dx a)!! y = (2 + 7x)(x ! 3)!;! x = 2!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!b)!! y = (1+ 2x)(1! 2x)!;! x = 1 2 c)!! y = (x 4 ! 4)(x 4 + 4)!;! x = 1 6. Use the QUOTIENT RULE to find the first derivative. DO NOT simplify answer. x2 4x 2 a)!! y = !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!b)!! y = 2x +1 1! 6x 3 c)!! y = x 2 ! 4x x2 ! 9 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!d)!! y = 2 x+2 x +9 e)!! y = x3 4 ! x2 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! f )!! y = 8 ! x3 3x 5 7. Find dy at the given value of x. dx a)!! y = x +1 x 2 !1 !!!,!! x = 0!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!b)!! y = !!!,!! x = 1 2x 2 !1 x 2 +1 c)!! y = x3 2 + x2 !!!,!! x = !1!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!d)!! y = !!!,!! x = !2 8 ! x3 3x 6 Part C: 1. Use the CHAIN RULE to find the first derivative. DO NOT simplify answers. 5 5 a)!! y = ( 6x 2 ) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!b)!! y = (!3x 4 ) + 6x 2 ! 7x 4 3 c)!! y = ( p 2 ! 3p +1) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!d)!! y = ( x 2 !1) ( 2x !1) e)!! y = 1 6x (x 2 4 +1) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! f )!! y = ( 2x 4 + 8) 2 4 1 g)!! y = (3t 4 ! 2t ) 4 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!h)!! y = 5x + 7 1% " i)!! y = !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! j)!! y = $1+ u 3 ' 2 # & 4+t 1 6 " 1 % k)!! y = 1+ u !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!l)!! y = $1+ 3 ' # x& ( ) 3 6 6 4 3 m)!! y = (! x ) + 2! 2 x + 6! x!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!n)! y = ( 2x 3 + x ) ! o)!! y = 6! x (x 3 !!) 2 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! p)!! y = 4x 2 ( 2x ! 5) 3 7 2. Find the first derivative of each expression below. DO NOT simplify your answer. 3 a)!! y = ! x + ( 5! x ) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!b)!! y = (1! x + 2x 2 ! 3x 3 ) 3 2 c)!! y = ((2x) + (16 ! x) 4 ) 4 2 (2x !1) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!d)!! y = 3 ( x ! 2) !x !3 e)!! y = ( 2x !1) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! f )!! y = !!) 2 " x 2 !1 % g)!! y = x (1! 2x ) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!h)!! y = $ 2 ' # x +1 & 2 (x 3 5 3. Differentiate each expression below. DO NOT simplify. "! % 3 a)!! f (x) = ! x ! ( 2! x ) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!b)!!g(x) = ! x + $ ' #x& c)!!h(x) = ( 2x ! 3x + 5) 2 !1 2 " 1 % !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!d)!! f (x) = $ x!!! x !3 ' # 3 & !3 4 e)!!k(x) = ! ( x 2 + ! 2 ) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! f )!! p(x) = ! ( 2x 2 ! 3x +1) 3x dy find by: x+2 dx a) using the Quotient Rule b) using the Product Rule !4 4. Given y = c) show the results in (a) and (b) are identical. 8 5. Find y' if: a)!! y = 6. If y = (2x ! 3) 5 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!b)!! y = ( 1! x !) ( x +1) 2 2 3x !1 dy find at (-2, -7) x+3 dx dy . DO NOT simplify. dx 1 1 a)!! y = 2 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!b)!! y = 2 x +6 (5x + 6) 7. Rewrite each quotient as a power and find c)!! y = 3 (2x 3 ! 5) 4 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!d)!! y = 3x (2x 2 ! 5) 4 9 Part D 1. If a) b) c) y = 2x 3 + 5x ! 7 find: the rate of change of y with respect to x. the rate of change of y with respect to x at x = 1. the rate of change of y with respect to x at (2, 19). 2. If y = 4x 2 ! 6x ! 3 find: a) y' dy b) dx c) an expression that calculates the slope of the tangent line at any point. d) the slope of the tangent line at x = 1 e) the slope of the tangent line at (2, -1) 10 Part E 1. Use IMPLICIT DIFFERENTIATION to find dy in terms of x and y. dx a)!!4x 2 + y 2 = 8!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!b)!!!3x ! 4y 2 = 2 c)!! x 2 + 5y 2 + y = 10!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!d)!!! xy 2 = 4 e)!! x 2 + 2xy ! y 2 = 13!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! f )!!! y 3 + y = 4x g)!! y(x 2 + 3) = y 4 +1!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!h)!!! xy 3 + x 3 y = 2 11 2. Write each function in an implicit form without radicals. Differentiate this expression dy to find : dx a)!! y = 2 x !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!b)!! y = 3 x c)!! y = 3! x !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!d)!! y = 3. If x 2 + y 2 = 25 find 3 x dy at x = 3 dx 12 Part F: 1. Each position function below describes motion in a straight line. Find the velocity and acceleration as functions of time (t). 1 a)!!s(t) = 5t 2 ! 2t + 7!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!b)!!s(t) = 4t 4 ! t 2 + 3 2 c)!!s(t) = 6t ! 8!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!d)!!s(t) = t ! 8 + 2 e)!!s(t) = t (t ! 3) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! f )!!s(t) = t + 6 t 4t t+2 Part G: 1. If x 2 + y 2 = 8 and dx dy = 3 , find at (-2, 2). dt dt 2. If x 2 + y 2 = z 2 and dx dy dz = !2 , = !1 , x = 1 and y = -3, find . dt dt dt 13 3. If A is the area of a circle of radius r, find dA dr in terms of . dt dt 4. The area of a circular oil slick on the surface of the sea is increasing at the rate of 150 m2/s. How fast is the radius changing when: a) the radius 25 m. b) the area is 1000 m2 5. How fast is the side of a square shrinking when the length of the side is 2 m and the area is decreasing at 0.25 m2/s ?. 6. The hypotenuse of a right triangle is of fixed length but the lengths of the other two dx = 4 and x = 8 if the sides x and y depends on time. How fast is y changing when dt length of the hypotenuse is 17? 7. A spherical balloon is inflated so that the volume is increasing at the rate of 5 m3/min. a) at what rate is the diameter increasing when the radius is 6 m? b) at what rate is the diameter increasing when the volume is 36 m3? 14 8. Two cars approach an intersection, one traveling east and the other north. If both cars are traveling at 70 km/h, how fast are they approaching each other when they are both 0.5 km from the intersection? Part H: 1. Find dy : dx ! !$ a)!! y = 3cos 4x!!!!!!!!!!!!!!!!!!!!!!!!b)!! y = cos # 3x + &!!!!!!!!!!!!!!!!!!!!!!!!!!c)!! y = cos ( 2x 3 ) " 2% d)!! y = cos3 2x!!!!!!!!!!!!!!!!!!!!!!!!e)!! y = cos ( x 2 + x ) !!!!!!!!!!!!!!!!!!!!!!!!!!! f )!! y = ( x + cos x ) 2 g)!! y = 2sin ! x + x 2 !!!!!!!!!!!!!!!!h)!! y = 3sin ( x 2 '1) !!!!!!!!!!!!!!!!!!!!!!!!!!i)!! y = (sin 2x + cos x ) 2 2. Differentiate each functions: a)!! f (x) = x cos x!!!!!!!!!!!!!!!!!!!!!!!!!!!!!b)!!g(x) = x 3 sin 2x!!!!!!!!!!!!!!!!!!!!!!!!c)!!k(x) = x 3 cos(3x 2 ) d)!!h(x) = sin ( cos ! x ) !!!!!!!!!!!!!!!!!!!!!e)!!m(x) = sin x cos x!!!!!!!!!!!!!!!!!!!!!! f )!! p(x) = sin 2x cos2x 1 2 3 1 g)!!g(x) = sin (x )!!!!!!!!!!!!!!!!!!!!!!!!!!h)!!k(x) = sin !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!i)!! f (x) = ( x 2 + cos2 x ) x 2 15 3. Find dy in each case where A, B, m and n are constants: dx a)!! y = cos ( Ax + B) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!b)!! y = A cosn Bx c)!! y = sin m (x n )!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!d)!! y = Ax n sin m Bx 4. Find dy in each case: dx a)!! y = 2 tan x ! tan 2x!!!!!!!!!!!!!!!!!!!b)!! y = 3sec ( 2x 2 +1) !!!!!!!!!!!!!!!!!!!c)!! y = 3sec 5x d)!! y =!! x 2 + sec 2 x !!!!!!!!!!!!!!!!!!!!!e)!! y = x2 !!!!!!!!!!!!!!!!!!!!!!!!!!! f )!! y = tan(x 2 ) ! tan 2 x tan x "1% g)!! y = x csc x !!!!!!!!!!!!!!!!!!!!!!!!!!h)!! y = x 2 tan $ '!!!!!!!!!!!!!!!!!!!!!!!!i)!! y = sin ( tan x ) #x& 5. Use the derivatives of sin x and cos x to verify the derivatives of cot x and csc x as given on the Calculus 12 Formula Sheet. 16 6. Find dy in each case. Watch for the need for Implicit Differentiation! dx a)!! y = cot 2x + csc 2x!!!!!!!!!!!!!!!!!!!!!b)!! y = 2x 3 cot x!!!!!!!!!!!!!!!!!!c)!! y = ( x + csc x 2 ) d)!! y = ! 2 + csc 2 x !!!!!!!!!!!!!!!!!!!!!!!e)!! y = cot x !!!!!!!!!!!!!!!!! f )!! y = x !csc x 1+ csc 2 x g)!! y = sin ( xy) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!h)!! y = cot ( x + y) !!!!!!!!!!!!!!!!!i)!! y = ( cot x + sin x ) 2 Part I: 1. Find the derivative of each function: a)!! f (x) = ln(x ! 2)!!!!!!!!!!!!!!!!!!!!!!b)!!g(x) = 3ln(4 ! 3x)!!!!!!!!!!!!!!!!!!!!!c)!!k(x) = ln(x 2 + 5) " 1 % 2 d)!!h(x) = ln x 2 + ln 5!!!!!!!!!!!!!!!!!!!e)!! p(x) = ln $ x + '!!!!!!!!!!!!!!!!!!! f )!!h(x) = x ln x # x& 4 g)!! f (x) = ( ln x ) !!!!!!!!!!!!!!!!!!!!!!!!!h)!! f (x) = ln(x 4 )!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!i)!!g(x) = ( x ln x ) 4 3 j)!!h(x) = ( ln x + x ) !!!!!!!!!!!!!!!!!!!!k)!!m(x) = (sin x ) ( ln x ) !!!!!!!!!!!!!!!!!!!!!l)!! p(x) = ln (sin x ) m)!! f (x) = ln x !!!!!!!!!!!!!!!!!!!!!!n)!!w(x) = ln (sin x + cos x ) !!!!!!!!!!!!!!!o)!!r(x) = cos2 ( ln x ) !!!!!!!!! 3+ ln x 17 2. By differentiating and simplifying, show that each pair of functions has the same derivative: a)!! f (x) = ln (10x 2 ) !!!!!!!!!!!!!!!!!!!and !!!!!!!!!!!!!!!!!!!!!g(x) = ln ( x 2 ) b)!! f (x) = ln (sin 2x ) !!!!!!!!!!!!!!!!!!!and !!!!!!!!!!!!!!!!!!!!!g(x) = ln (sin x ) + ln ( cos x ) c)!! f (x) = ln ( tan x ) !!!!!!!!!!!!!!!!!!!and !!!!!!!!!!!!!!!!!!!!!g(x) = ln (sin x ) ! ln ( cos x ) 3. Find dy : dx a)!! y = x ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!b)!! y = e x !!!!!!!!!!!!!!!!!!!!!!!!!!!!!c)!! y = e 2 d)!! y = e! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!e)!! y = e! x !!!!!!!!!!!!!!!!!!!!!!!!!!!! f )!! y = xe x 18 4. Differentiate each functions: a)!! f (x) = 5e 2 x !!!!!!!!!!!!!!!!!!!!!!!!!!!b)!!h(x) = 2e x 2 !x !!!!!!!!!!!!!!!!!!!!!!!!!!c)!!k(x) = 3e 2sin x d)!! p(x) = x 2 e x !!!!!!!!!!!!!!!!!!!!!!!!!!!e)!!q(x) = x 2 e!3x !!!!!!!!!!!!!!!!!!!!!!!!!! f )!!m(x) = ( e 2 x ! e!2 x ) g)!!g(x) = x !e x !!!!!!!!!!!!!!!!!!!!!!h)!! f (x) = ln (! + e 2 x ) !!!!!!!!!!!!!!!!!!!!!i)!!m(x) = e2 x 1+ e 2 x j)!!g(x) = e x ln x !!!!!!!!!!!!!!!!!!!!!!!!!!!!k)!!w(x) = ln ( e x + e! x ) !!!!!!!!!!!!!!!!!!!!!!!!!!l)!!r(x) = 5. If y defined implicitly as a function of x by the given equation, find 2 ex ln x dy : dx a)!! x + ylnx = 2!!!!!!!!!!!!!!!!!!!!!!!!!b)!! y ! e xy = 5!!!!!!!!!!!!!!!!!!!!!!!c)!!esin 2 y + 2x = 4y 19 6. Find dy : dx a)!! y = x ! !!!!!!!!!!!!!!!!!!!!!!!!!!!b)!! y = ! x !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!c)!! y = e! x d)!! y = 2 x !!!!!!!!!!!!!!!!!!!!!!!!!!!e)!! y = e x ! x e !!!!!!!!!!!!!!!!!!!!!!!!!! f )!! y = x ! 2 2 2 g)!! y = 10 x !!!!!!!!!!!!!!!!!!!!!!!!!h)!! y = 2 sin x !!!!!!!!!!!!!!!!!!!!!!!!!!!!!i)!! y = 3x +3x 7. Find dy : dx a)!! y = ln x 2 !1 !!!!!!!!!!!!!!!!!!!!!!!!b)!! y = ln x 3 ! 7x +1 !!!!!!!!!!!!!!!!!!!!!!c)!!! y = ( ln x ) 3 d)!! y = ln tan x !!!!!!!!!!!!!!!!!!!!!!!e)!! y = cos x ln cos x !!!!!!!!!!!!!!!!!!!!!!!!! f )!! y = sin ( ln x ) Part J: 1. Find dy : dx 3 a)!! y = 5 (3x !1) !!!!!!!!!!!!!!!!!!!!!b)!! y = Ax 3 ! 2Bx 2 + C 4 !!!!!!!!!!!!!!!!!!c)!! y = 5x 3 ! 2 6 + !5 2 x x 20 1. Con’t Find d)!! y = 10 x ! 2 dy dx 5 3 x2 x2 ! 2 ! !!!!!!!!!!!!!!!!!!!!!!e)!! y = !!!!!!!!!!!!!!!!!!!!!!!!! f )!!! y = 2 !!! 3x +1 x +2 x 3 x2 3 !5 2 3 2 3 1 2 g)!! y = (x ! 3x ) !!!!!!!!!!!!!!!!!!!!!!!!h)!!! y = (x !1) (2x + 5) !!!!!!!!!!!!!!!!!!!!!!!!i)!! y = !(4x ! 2x) !! j)!! y = 1 4 ! x2 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!k)!! y = (! x)3 ! (4! x)2 !!!!!!!!!!!!!!!!!!!!!!!!l)! y =! (2x !1)2 !!!!!!!!!!!!!!! (x + 3)!3 m)!! y = cos(2x 3 + 5)!!!!!!!!!!!!!!!!!!!!!!!!!n)!! y = sin 5 (3x + 4x 2 )!!!!!!!!!!!!!!!!!!!!!!!!!o)!! y = 4x cos3x p)!! y = sin 2 x2 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!q)!! y = !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!r)!! y = sin 3 (tan 4x) 2 x 3tan 4x s)!!4x 2 + y 2 = 16!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!t)!! xy 2 = 18!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!u)!! y = x 2 ln(2x + 5) v)!! y = cos(xy)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!w)!! y 2 + e x = y!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! y)!! y = 5 x !!!! 2 21
© Copyright 2026 Paperzz