The Expectation Maximization (EM) Algorithm • Formally outlined by Dempster, Laird, and Rubin (1977) in “Maximum likelihood from incomplete data via the EM algorithm” U y • Complete Data: y ( y , ) C O • Parameter: 35 The EM Algorithm (0) • Initialize parameter: set to • For t=1 to … complete-data likelihood conditional expectation – E-step Q( | (t ) ) E[log f ( yC | ) | yO , (t ) ] – M-step (t 1) arg max Q( | (t ) ) 36 The EM Algorithm • Ascent property – The M step ensures the algorithm improves Q( | (t ) ) – It can be shown that improving Q( | (t ) ) implies improving L( ) f (Y O | ) (the observed-data likelihood) • Convergence to local maxima – Choose multiple sets of initial values 37 Example 1: Allele Frequencies for the ABO Blood Group • Suppose nA=186, nB=38, nAB=13, and nO=284 were observed. Genotype Phenotype AA A AO A AB BB AB B BO B OO O count nA 186 n AB 13 nB 38 nO 284 • Question: P(A) = ?, P(B)=?, P(O)=? 38 Example 1: Allele Frequencies for the ABO Blood Group • More possible classes (genotypes) than those can be distinguishable (phenotypes) – If a person has type A (B), the underlying genotype could be either AA (B) or AO (BO) • The likelihood of “complete data “is simple (nAA , nAO , nBB , nBO , nAB , nOO ) ~ Multinomia l(n, p A2 ,2 p A pO , pB2 ,2 pB pO ,2 p A pB , pO2 ) • Available data is incomplete – nAA, nAO, nBB, nBO are unknown • Consider the EM algorithm 39 Example 1: Allele Frequencies for the ABO Blood Group • Observed data: nO=(nA,nB,nAB,nO) • Unobserved data: nU=(nAA, nAO,nBB,nBO) • Complete data: nC=(nAA,nAO,nBB,nBO,nAB,nOO) – nAA+nAO=nA – nBB+nBO=nB – nO=nOO • Log of complete-data likelihood 2 ln f (n C | p (t ) ) n AA ln( p A(t ) ) n AO ln(2 p A(t ) pO(t ) ) 2 2 nBB ln( pB(t ) ) nBO ln(2 pB(t ) pO(t ) ) nO ln( pO(t ) ) n AB ln(2 p A(t ) pB(t ) ) n ln n AA , n AO , nBB , nBO , n AB , nO ) 40 Example 1: Allele Frequencies for the ABO Blood Group • (t ) Q ( p | p ) The E step: calculate – Take the expectation of ln f (nC | p (t ) ) conditional on the observed counts nA , nB , nAB , nO , and the current parameters p (t ) – To do that , we need to calculate E(nU | nO , p(t ) ) E (n AA | n , p ) n A O p (t ) p (t ) 2 A (t ) 2 A 2p p (t ) A (t ) O , E (n AO | n O , p (t ) ) n A E (n AA | n O , p (t ) ) E (nBB | n O , p (t ) ) nB pB(t ) p (t ) 2 B 2 2p p (t ) B (t ) O , E (nBO | n O , p (t ) ) nB E (nBB | n O , p (t ) ) 41 Example 1: Allele Frequencies for the ABO Blood Group • The M step – Maximizes Q( p | p(t ) ) – Notice the constraint p A p B pO 1 – Introduce a Lagrange multiplier H ( p, ) Q( p | p(t ) ) ( pA pB pO 1) – Setting the partial derivatives leads to p A(t 1) pB(t 1) pO(t 1) 2 E (n AA | n O , p (t ) ) E (n AO | n O , p (t ) ) n AB 2n 2 E (nBB | n O , p (t ) ) E (nBO | n O , p (t ) ) n AB 2n E (n AO | n O , p (t ) ) E (nBO | n O , p ( t ) ) 2nO 2n 42 Example 1: Allele Frequencies for the ABO Blood Group • Take an initial guess: pA 0.3, pB 0.2, pO 0.5 Iteration 0 1 2 3 4 5 pA pB pO .3000 .2321 .2160 .2139 .2136 .2136 .2000 .0550 .0503 .0502 .0501 .0501 .5000 .7129 .7337 .7359 .7363 .7363 43
© Copyright 2026 Paperzz